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Image Generation
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Photo Editting
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Text to Image Synthesis
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Making Music

https://magenta.tensorflow.org/gansynth
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Computation Graph

Neural network = parametrized, non-linear function
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Computation Graph

Computation graph: Directed graph of functions, depending on
parameters (neuron weights)

Question: can you write the full expression of f (x ) for this graph?
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Computation Graph

Combination of linear (parametrized) and non-linear functions

11



Computation Graph

Not only sequential application of functions
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Computation Graph

▶ Automatic computation of
gradients: all modules are
differentiable!

▶ Vector computation on CPU and
accelerators (GPU and TPU).
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Formalization for Classification Problem

▶ Input: {x, y}n
i=1 with y ∈ {0, 1}

▶ f (·, θ) : Rp → (0, 1)
▶ Output: f (xi , θ) = P(yi = 1 | x = xi )
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Simple example: One-hidden layer network

f (x) = σ(wTx + b)

▶ zh(x) = Whx + bh

▶ h(x) = g(zh (x)) = g(Whx + bh )

▶ zo(x) = Woh(x) + bo

▶ f(x) = softmax (zo) = softmax (Woh(x) + bo)

Where:
▶ (z (·) pre-activation)
▶ w, b weights and bias
▶ σ activation function

15



Simple example: One-hidden layer network

Question: What is this softmax thing doing here?

softmax (x) =
1∑n

i=1 exi
·



ex1

ex2

...

exn


∂softmax (x)i

∂xj
=


softmax (x)i · (1 − softmax (x)i ) i = j

−softmax (x)i · softmax (x)j i ̸= j
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Training the network
Objective: Finding parameters θ = (Wh ;bh ;Wo ;bo) that minimize
the negative log likelihood
The loss function for a given sample s ∈ S :

ℓ(f(xs ; θ), y s) = − log f(xs ; θ)ys

→ when computed on full training set:

L(θ) = − 1
n

n∑
i=1

log f(xs ; θ)ys

or even with ℓ2-regularization term

L(θ) = − 1
n

n∑
i=1

log f(xs ; θ)ys + λ(∥W h∥2 + ∥W o∥2)

Question (reminder): how to find θ?
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Gradient Descent

Gradient descent:

θ(k+1) = θ(k) − η∇θL(θ(k))

Question: what is the potential problem with this?

−→ problematic with large n : taking long time to train the network
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Stochastic Gradient Descent

1. Initialize θ randomly
2. For K epochs perform:

▶ Important: randomly select a small batch of samples (B ⊂ [n ])
▶ Do gradient descent with only this batch of samples:

θ(k+1) = θ(k) − η∇θLB (θ
(k))

3. Stop when reaching criterion:
L(θ(k)) stops decreasing when computed on validation set
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Backpropagation: Computing Gradients Efficiently

Output Weights:

∂ℓ(f(x), y)
∂W o

i,j

Hidden Weights:

∂ℓ(f(x), y)
∂W h

i,j

Output bias:

∂ℓ(f(x), y)
∂bo

i

Hidden bias:

∂ℓ(f(x), y)
∂bh

i

−→ differentiate with chain-rule – with z (x ) = u(v(x )):

∂z
∂x

=

[
∂u
∂v

]⊤
∂v
∂x
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Backpropagation: For one hidden-layer network

Compute activation gradients

∇zo(x)ℓ = f(x)− one-hot-encode(y)

Compute layer params gradients

∇Wo ℓ = ∇zo(x)ℓ · h(x)
⊤

∇bo ℓ = ∇zo(x)ℓ

Compute prev layer activation gradients

∇h(x)ℓ = Wo⊤∇zo(x)ℓ

∇zh (x)ℓ = ∇h(x)ℓ⊙ σ′(zh(x))
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Generative Adversarial Network (GAN)

Alternate training between:
▶ A generative network G (generator), and
▶ A discrimininative network D (discriminator)

Goodfellow, Ian, et al. Generative Adversarial Nets. NeurIPS 2014
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What does these two networks do?
(intuitively): Discriminator

▶ Estimates the probability of a given sample coming from the real
dataset

▶ Optimized to tell the fake samples from the real ones

Generator
▶ outputs synthetic samples given a noise variable input ( brings in

potential output diversity)
▶ trained to capture the real data distribution so to generate samples

can be as real as possible

24
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What does these two networks do?

More formally:
▶ pz : Noise distribution
▶ pg : Generator’s distribution over data x
▶ pr : Real data x ’s distribution
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What does these two networks do?

Discriminator:
▶ Make sure decisions over real data are accurate by

maxEx∼pr (x)[logD(x )]

▶ At the same time: given a fake sample G(z ) with z ∼ pz

maxEz∼pz [log(1 − D(G(z )))]
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What does these two networks do?

Generator:
▶ Try its best to fool the discriminator:

minEz∼pz [log(1 − D(G(z )))]
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What does these two networks do?

Putting together:

L(D ,G) = Ex∼pr (x)[logD(x )] + Ez∼pz (x)[log(1 − D(G(z )))]

= Ex∼pr (x)[logD(x )] + Ex∼pg (x)[log(1 − D(x ))]
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What does these two networks do?

Putting together: playing a minimax (zero-sum) game

min
G

max
D

L(D ,G) = Ex∼pr (x)[logD(x )] + Ex∼pg (x)[log(1 − D(x ))]
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Let’s examine the loss function

L(D ,G) = Ex∼pr (x)[logD(x )] + Ex∼pg (x)[log(1 − D(x ))]

=

∫
x
(pr (x ) logD(x ) + pg(x ) log(1 − D(x ))) dx

Since we are summing all over sample x , what we should pay
attention to is

min
G

max
D

f (x ) def.
= pr (x ) logD(x ) + pg(x ) log(1 − D(x ))

Question: finding optimal D is equivalent with?

∂f (x )
∂D(x )

= 0
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Optimal value for D

∂f (x )
∂D(x )

=

pr (x )
1

ln 10
1

D(x )
− pg(x )

1
ln 10

1
1 − D(x )

=
1

ln 10

(
pr (x )
D(x )

− pg(x )
1 − D(x )

)
=

1
ln 10

(
pr (x )− (pr (x ) + pg(x ))D(x )

D(x )(1 − D(x ))

)
and so setting this equals to zero gives

D∗(x ) =
pr (x )

pr (x ) + pg(x )
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Global Optimal

D∗(x ) =
pr (x )

pr (x ) + pg(x )

plugging in the loss we have

L(G ,D∗)

= Ex∼pr (x)[logD∗(x )] + Ex∼pg (x)[log(1 − D∗(x ))]

= Ex∼pr (x)

[
log

pr (x )
pr (x ) + pg(x )

]
+ Ex∼pg (x)

[
pg(x )

pr (x ) + pg(x )

]

= −2 log(2) + Ex∼pr (x)

[
log

2pr (x )
pr (x ) + pg(x )

]
+ Ex∼pg (x)

[
2pg(x )

pr (x ) + pg(x )

]
= − log(4) + KL(pr || (pr (x ) + pg(x ))/2) + KL(pg || (pr (x ) + pg(x ))/2)
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Digression: Statistical Divergence

▶ A statistical divergence measures how a probability distribution P
differs from another probability distribution Q

▶ Kullback-Leibler divergence:

KL(P || Q)
def.
= EP

[
log

(
P
Q

)]
▶ Jensen-Shannon divergence:

JS(P || Q)
def.
=

1
2
KL(P || (P + Q)/2) +

1
2
KL(Q || (P + Q)/2)

−→ goes to 0 when P and Q are the same
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Back to Global Optimal...

D∗(x ) =
pr (x )

pr (x ) + pg(x )

plugging in the loss we have

L(G ,D∗)

= − log(4) + KL(pr || (pr (x ) + pg(x ))/2) + KL(pg || (pr (x ) + pg(x ))/2)

= − log(4) + JS(pr || pg)

−→ when pg is trained to be very close to pr , we achieve the
theoretical global optimum L(G∗,D∗) = − log(4)
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Training GAN

Goodfellow, Ian, et al. Generative Adversarial Nets. NeurIPS 2014
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Training GAN

−→ but reality is far from theory...

Goodfellow, Ian, et al. Generative Adversarial Nets. NeurIPS 2014
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Hard to achieve a global optimum (Nash Equilibrium)

Simple example:

min
x

max
y

f (x , y) = xy

equivalent with min
x

xy and min
y

−xy

Goodfellow, Ian, et al. Generative Adversarial Nets. NeurIPS 2014
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Hard to achieve a global optimum (Nash Equilibrium)
Simple example:

min
x

max
y

f (x , y) = xy

equivalent with min
x

xy and min
y

−xy

Differentiating gives:
∂f
∂x

= y
∂f
∂y

= −x

So when doing GD:

x (k+1) = x (k) − ηy y(k+1) = y(k) + ηx

Salimans, Tim, et al. "Improved techniques for training gans." NeurIPS 2016
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Supports of pr and pg concentrates in lower dimension

Meaning: for high-dimensional data, pr and pg can be very hard to
train to match each others
−→ our discriminator has easy time to distinguish real and fake
samples

40



Vanishing Gradient

Recall that

min
G

max
D

L(D ,G) = Ex∼pr (x)[logD(x )] + Ex∼pg (x)[log(1 − D(x ))]

−→ if the discriminator does a great job (D(x ) = 1 for all x ∼ pr (x )
and D(x ) = 0 for all x ∼ pg(x )), the gradient of the loss function
drops down to close to zero
−→ SGD update no longer works
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Mode Collapse

Mode Collapse: the generator always produces same outputs in
training

Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017
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Lack of Proper Evaluation Metric

When training GANs:
▶ We can check whether if the loss decreases – but it does not tell the

whole story (recall vanishing gradient slide)
▶ How to evaluate the generated images’ quality? (asking human

being?)
▶ i.e. lack an objective function to compare performance of different

architectures
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To read more

▶ This part is based on Sectio 3 of Salimans, Tim, et al. "Improved
techniques for training gans." NeurIPS 2016

▶ Related: Arjovsky and Bottou. "Towards Principled Methods for
Training Generative Adversarial Networks." ICLR 2017.

▶ Also related: Huszár "How (not) to train your generative model:
Scheduled sampling, likelihood, adversary?." ICLR 2015.

▶ Arguably the original GAN proposal of Goodfellow et al. (2014)
worked because they switched the loss from using asymmetric
Kullback-Leibler divergence to symmetric Jensen-Shannon divergence
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Feature Matching

▶ Objective: lessen the stability of GANs training
▶ Idea: discriminator to inspect whether the generator’s output

matches expected statistics of the real samples
▶ Implementation: training the generator to match the expected value

of the features on an intermediate layer of the discriminator
▶ Denoting f (x) the summary on an intermediate layer of the

discriminator, now the objective is

∥Ex∼pr f (x )− Ex∼pz f (G(z ))∥2
2

▶ In practice: f (x ) can be mean or median (summary statistics) of the
features
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Minibatch Discrimination

▶ Objective: avoid mode-collapse in the generator
▶ Idea: the discriminator is able to account for the relationship between

training data points in one batch, instead of each point independently
▶ Implementation: In one minibatch, we approximate the closeness

between every pair of samples, denoting cb(xi , xj )i,j∈[n], and get the
overall summary of one data point by summing up how close it is to
other samples in the same batch

ob(xi ) =
∑

j

cb(xi , xj )

▶ Then we add ob(xi ) to the input of the model
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Historical Averaging

▶ Objective: bypass the low-dimensional manifold support problem and
saddle points for the non-convex minimax optimization

▶ Idea: adding to the generator and the discriminator’s cost a term

∥θ − 1
t

t∑
i=1

θ(i)∥2
2

where θ(i) is the parameters at the previous time i
▶ Implementation: scale better (i.e. faster training for large dataset) by

adding only θ(i − 1) to the i -th training iteartion (online learning)
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One-sided label smoothing

▶ Objective: soften the discriminator value to avoid network’s
vulnerability

▶ Idea: smoothing label of discriminator network with α for positive
label (or 1 if the input is real data), and β for negative label

▶ The optimal D is then

D(x) =
αpr (x ) + βpg(x )

pr (x ) + pg(x

▶ Example: α = 0.9 and β = 0.1
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Virtual Batch Normalization

▶ Batch-norm1 is one of the most popular tricks for fastening and
stabilizing the training of deep neural networks

▶ The idea of batch-norm is very simple: normalized each layer’s input
(activation) with their mean and covariance

▶ However: batch-norm can make output of a neural network highly
dependent on some other inputs in the same minibatch

▶ Idea: in virtual batch-norm, we normalize the input based on a
collection of fixed inputs (called reference batch)

▶ Implementation: virtual batch-norm is more expensive (forward pass
on two minbatches of data) – so only used in the generator network

1Ioffe and Szegedy . "Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift" (2015)
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Better metric accounting for Distribution Similarity

▶ We already argue KL is not the best divergence for GAN loss, but
also the JS divergence: when the two distributions lies on low
dimensional manifold, it is hard to match them with gradient descent

▶ This is why the concept of Wasserstein GAN was introduced 2

2Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017
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Previously

min
G

max
D

L(D ,G) = Ex∼pr (x)[logD(x )] + Ex∼pg (x)[log(1 − D(x ))]

GANs training suffers from many problems:
▶ Stability of the optimization scheme
▶ Vanishing gradient
▶ Mode collapse

with many training fixes
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Better metric accounting for Distribution Similarity

▶ We already argue KL is not the best divergence for GAN loss, but
also the JS divergence: when the two distributions lies on low
dimensional manifold, it is hard to match them with gradient descent

▶ This is why the concept of Wasserstein GAN was introduced 3

3Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017
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Statistical Distance

▶ Distance in Rd? What is the distance between two vectors? Two
matrices?

▶ What if we want to measure the distance between two probability
distributions P and Q?

▶ Last week: Kullback-Leibler and Jensen-Shannon divergences

55
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Reminder: Why do we care about the prob. distance?

In GAN architecure, we have pr (x ) and pg(x )
where pr (x ) the distribution of real dataset

pg(x ) the generator learned distribution over data x
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Background on Optimal Transport – next topic
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Wasserstein-1 distance as a GAN metric

W1(pr , pg)
def.
= min

γ∈Π(pr ,pg )
E(x ,x ′)∼γ∥x − x ′∥

▶ Also called Earth-Mover distance (EMD)
▶ Imagine the two distributions are a certain amount of piles of dirt

over a region
▶ γ is one way to transport one pile of dirt to the other
▶ Therefore we have the constraint∑

x

γ(x , x ′) = pg(x ′)∑
x ′

γ(x , x ′) = pr (x )

▶ EMD is the minimum cost of moving them
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Wasserstein-1 distance as a GAN metric

W1(pr , pg)
def.
= min

γ∈Π(pr ,pg )
E(x ,x ′)∼γ∥x − x ′∥

−→ empirical version

W1(pr , pg)
def.
= min

γ∈Π(pr ,pg )

∑
x ,x ′

γ(x , x ′)∥x − x ′∥

When using W1 as a metric, we have the WGAN

Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017
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Wasserstein-1 vs JS/KL as a GAN loss?

It’s all about the smoothness (i.e. differentiable). Example 1 in the
paper

▶ Suppose z ∼ U [0, 1],
▶ P0 is the distribution of (0, z ) ∈ R2

▶ Pθ this distribution of gθ(z ) = (θ, z ) with θ ∈ (0, 1) (can view this as
our generator distribution)

Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017
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Wasserstein-1 vs JS/KL as a GAN loss?
What happens when one calculate these divergence? When θ ̸= 0

▶ Kullback-Leibler:

KL(P0,Pθ) = KL(Pθ,P0) =
∑

x=0,y∼U [0,1]

px log

(
1
0

)
= +∞

▶ Jensen-Shannon:

JS(P0,Pθ) = 1/2

 ∑
x=0,y∼U [0,1]

1 log
1

1/2
+

∑
x=θ,y∼U [0,1]

1 log
1

1/2

 = log2

▶ EMD:
W (P0,Pθ) = |θ|

When θ = 0 −→ KL(P0,Pθ) = JS(P0,Pθ) = 0 but

W (P0,Pθ) = 0 = |θ|
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Wasserstein-1 vs JS/KL as a GAN loss?

Conclusion from the simple example:
▶ KL and JS divergences are not smooth (differentiable) everywhere
▶ Using Wasserstein-1 distance fix this issue
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Wasserstein-1 as a GAN loss?

W1(pr , pg)
def.
= min

γ∈Π(pr ,pg )
E(x ,x ′)∼γ∥x − x ′∥

Problem: this formulation is highly intractable
−→ Kantorovich-Rubinstein duality for W1 distance

W1(pr , pg) = sup
∥f ∥L≤1

Ex∼pr [f (x )]− Ex∼pg [f (x )]

Remark 6.5, Villani, Cédric. Optimal transport: old and new. Vol. 338.
Berlin: springer, 2009.
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Wasserstein-1 as a GAN loss?

In other words, with the W1 distance, we move from the loss

min
G

max
D

L(D ,G) = Ex∼pr (x)[logD(x )] + Ex∼pg (x)[log(1 − D(x ))]

to
max

w
Ex∼pr [fw (x )]− Ez∼pz [fw (gθ(z ))]

Important improvements:
▶ From minimax loss (hard to solve) to single maximization
▶ fw is a parameterization: now we can use any architectures of neural

networks to train
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Wasserstein-1 as a GAN loss?

Theorem 3: with the loss

W1(pr , pg) = max
w

Ex∼pr [fw (x )]− Ez∼pz [fw (gθ(z ))]

Under additional technical assumption (we skip it here, but it relates
to local Lipschitz continuity), we have

∇wW1(pr , pg) = −Ez∼pz [∇w fw (gθ(z ))]

Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017
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Wasserstein-1 as a GAN loss?

∇wW1(pr , pg) = −Ez∼pz [∇w fw (gθ(z ))]

Intuition:
▶ Now the “discriminator” D is not a direct critic of telling the fake

samples apart from the real ones anymore.
▶ Instead, it is trained to learn fw to help compute Wasserstein distance.
▶ Loss function decreases −→ Wasserstein-1 distance gets smaller
▶ Generator gθ output becomes closer to the real data distribution (or

pg becomes very similar to pr )
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Training WGAN

Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017
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Fixing vanishing gradient in some settings

Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017
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Better at image generation task

Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017
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However...

From the paper: ‘Weight clipping is a clearly terrible way to enforce a
Lipschitz constrain [...] we leave the topic of enforcing Lipschitz
constraints in a NN setting for further investigation‘

Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017
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Difficulties with Weight Constraints

▶ Clipping the weights inside a range (e.g. (-0.01, 0.01)) actually can
lead to optimization difficulties

Gulrajani, Ishaan, et al. "Improved training of wasserstein gans." NeuRIPS
2017.
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WGAN-GP: a variant of GAN variant...

Introducing a regularization term that penalize the gradient to the
loss

W1(pr , pg) = max
w

Ex∼pr [fw (x )]− Ez∼pz [fw (gθ(z ))]

+ λEz∼pz [(∥∇w fw (gθ(z ))∥2 − 1)2]

▶ This is equivalent to constraining the function f to be 1-Lipschitz
▶ Regularization terms is still differentiable
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Training WGAN-GP

Gulrajani, Ishaan, et al. "Improved training of wasserstein gans." NeuRIPS
2017.
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WGAN-GP vs. WGAN vs. other GANs
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Conclusion

▶ Using Wasserstein-1 distance is better for GAN training (taken into
account we are using the same architecture for generator), which
leads to significantly improvement in image-generation task

▶ However, clipping weight as a way to enforce Lipschitz continuity is
some kind of mysterious engineering technique

▶ With adding regularization term to enforce the norm of gradient to be
equal to 1, WGAN-GP suffers less instability problem in training
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