
Generative Modelling with Neural Networks

M2DS Alternants Research Seminar Course 2022

Outline

Some Applications of Generative Adversarial Networks

Brief Intros on Neural Network

Generative Model: Generative Adversarial Network

Problems with training GANs

Techniques to improve GANs Training

Wasserstein GAN

2

Outline

Some Applications of Generative Adversarial Networks

Brief Intros on Neural Network

Generative Model: Generative Adversarial Network

Problems with training GANs

Techniques to improve GANs Training

Wasserstein GAN

3

Image Generation

4

Photo Editting

5

Text to Image Synthesis

6

Making Music

https://magenta.tensorflow.org/gansynth

7

https://magenta.tensorflow.org/gansynth

Outline

Some Applications of Generative Adversarial Networks

Brief Intros on Neural Network

Generative Model: Generative Adversarial Network

Problems with training GANs

Techniques to improve GANs Training

Wasserstein GAN

8

Computation Graph

Neural network = parametrized, non-linear function

9

Computation Graph

Computation graph: Directed graph of functions, depending on
parameters (neuron weights)

Question: can you write the full expression of f (x) for this graph?

10

Computation Graph

Computation graph: Directed graph of functions, depending on
parameters (neuron weights)
Question: can you write the full expression of f (x) for this graph?

10

Computation Graph

Combination of linear (parametrized) and non-linear functions

11

Computation Graph

Not only sequential application of functions

12

Computation Graph

▶ Automatic computation of
gradients: all modules are
differentiable!

▶ Vector computation on CPU and
accelerators (GPU and TPU).

13

Formalization for Classification Problem

▶ Input: {x, y}n
i=1 with y ∈ {0, 1}

▶ f (·, θ) : Rp → (0, 1)
▶ Output: f (xi , θ) = P(yi = 1 | x = xi)

14

Simple example: One-hidden layer network

f (x) = σ(wTx + b)

▶ zh(x) = Whx + bh

▶ h(x) = g(zh (x)) = g(Whx + bh)

▶ zo(x) = Woh(x) + bo

▶ f(x) = softmax (zo) = softmax (Woh(x) + bo)

Where:
▶ (z (·) pre-activation)
▶ w, b weights and bias
▶ σ activation function

15

Simple example: One-hidden layer network

Question: What is this softmax thing doing here?

softmax (x) =
1∑n

i=1 exi
·

ex1

ex2

...

exn

∂softmax (x)i

∂xj
=

softmax (x)i · (1 − softmax (x)i) i = j

−softmax (x)i · softmax (x)j i ̸= j

16

Simple example: One-hidden layer network

Question: What is this softmax thing doing here?

softmax (x) =
1∑n

i=1 exi
·

ex1

ex2

...

exn

∂softmax (x)i

∂xj
=

softmax (x)i · (1 − softmax (x)i) i = j

−softmax (x)i · softmax (x)j i ̸= j 16

Training the network
Objective: Finding parameters θ = (Wh ;bh ;Wo ;bo) that minimize
the negative log likelihood
The loss function for a given sample s ∈ S :

ℓ(f(xs ; θ), y s) = − log f(xs ; θ)ys

→ when computed on full training set:

L(θ) = − 1
n

n∑
i=1

log f(xs ; θ)ys

or even with ℓ2-regularization term

L(θ) = − 1
n

n∑
i=1

log f(xs ; θ)ys + λ(∥W h∥2 + ∥W o∥2)

Question (reminder): how to find θ?

17

Training the network
Objective: Finding parameters θ = (Wh ;bh ;Wo ;bo) that minimize
the negative log likelihood
The loss function for a given sample s ∈ S :

ℓ(f(xs ; θ), y s) = − log f(xs ; θ)ys

→ when computed on full training set:

L(θ) = − 1
n

n∑
i=1

log f(xs ; θ)ys

or even with ℓ2-regularization term

L(θ) = − 1
n

n∑
i=1

log f(xs ; θ)ys + λ(∥W h∥2 + ∥W o∥2)

Question (reminder): how to find θ?

17

Training the network
Objective: Finding parameters θ = (Wh ;bh ;Wo ;bo) that minimize
the negative log likelihood
The loss function for a given sample s ∈ S :

ℓ(f(xs ; θ), y s) = − log f(xs ; θ)ys

→ when computed on full training set:

L(θ) = − 1
n

n∑
i=1

log f(xs ; θ)ys

or even with ℓ2-regularization term

L(θ) = − 1
n

n∑
i=1

log f(xs ; θ)ys + λ(∥W h∥2 + ∥W o∥2)

Question (reminder): how to find θ?

17

Gradient Descent

Gradient descent:

θ(k+1) = θ(k) − η∇θL(θ(k))

Question: what is the potential problem with this?

−→ problematic with large n : taking long time to train the network

18

Gradient Descent

Gradient descent:

θ(k+1) = θ(k) − η∇θL(θ(k))

Question: what is the potential problem with this?
−→ problematic with large n : taking long time to train the network

18

Stochastic Gradient Descent

1. Initialize θ randomly
2. For K epochs perform:

▶ Important: randomly select a small batch of samples (B ⊂ [n])
▶ Do gradient descent with only this batch of samples:

θ(k+1) = θ(k) − η∇θLB (θ
(k))

3. Stop when reaching criterion:
L(θ(k)) stops decreasing when computed on validation set

19

Backpropagation: Computing Gradients Efficiently

Output Weights:

∂ℓ(f(x), y)
∂W o

i,j

Hidden Weights:

∂ℓ(f(x), y)
∂W h

i,j

Output bias:

∂ℓ(f(x), y)
∂bo

i

Hidden bias:

∂ℓ(f(x), y)
∂bh

i

−→ differentiate with chain-rule – with z (x) = u(v(x)):

∂z
∂x

=

[
∂u
∂v

]⊤
∂v
∂x

20

Backpropagation: For one hidden-layer network

Compute activation gradients

∇zo(x)ℓ = f(x)− one-hot-encode(y)

Compute layer params gradients

∇Wo ℓ = ∇zo(x)ℓ · h(x)
⊤

∇bo ℓ = ∇zo(x)ℓ

Compute prev layer activation gradients

∇h(x)ℓ = Wo⊤∇zo(x)ℓ

∇zh (x)ℓ = ∇h(x)ℓ⊙ σ′(zh(x))

21

Outline

Some Applications of Generative Adversarial Networks

Brief Intros on Neural Network

Generative Model: Generative Adversarial Network

Problems with training GANs

Techniques to improve GANs Training

Wasserstein GAN

22

Generative Adversarial Network (GAN)

Alternate training between:
▶ A generative network G (generator), and
▶ A discrimininative network D (discriminator)

Goodfellow, Ian, et al. Generative Adversarial Nets. NeurIPS 2014

23

What does these two networks do?
(intuitively): Discriminator

▶ Estimates the probability of a given sample coming from the real
dataset

▶ Optimized to tell the fake samples from the real ones

Generator
▶ outputs synthetic samples given a noise variable input (brings in

potential output diversity)
▶ trained to capture the real data distribution so to generate samples

can be as real as possible

24

What does these two networks do?
(intuitively): Discriminator

▶ Estimates the probability of a given sample coming from the real
dataset

▶ Optimized to tell the fake samples from the real ones
Generator

▶ outputs synthetic samples given a noise variable input (brings in
potential output diversity)

▶ trained to capture the real data distribution so to generate samples
can be as real as possible

24

What does these two networks do?

More formally:
▶ pz : Noise distribution
▶ pg : Generator’s distribution over data x
▶ pr : Real data x ’s distribution

25

What does these two networks do?

Discriminator:
▶ Make sure decisions over real data are accurate by

maxEx∼pr (x)[logD(x)]

▶ At the same time: given a fake sample G(z) with z ∼ pz

maxEz∼pz [log(1 − D(G(z)))]

26

What does these two networks do?

Generator:
▶ Try its best to fool the discriminator:

minEz∼pz [log(1 − D(G(z)))]

27

What does these two networks do?

Putting together:

L(D ,G) = Ex∼pr (x)[logD(x)] + Ez∼pz (x)[log(1 − D(G(z)))]

= Ex∼pr (x)[logD(x)] + Ex∼pg (x)[log(1 − D(x))]

28

What does these two networks do?

Putting together: playing a minimax (zero-sum) game

min
G

max
D

L(D ,G) = Ex∼pr (x)[logD(x)] + Ex∼pg (x)[log(1 − D(x))]

29

Let’s examine the loss function

L(D ,G) = Ex∼pr (x)[logD(x)] + Ex∼pg (x)[log(1 − D(x))]

=

∫
x
(pr (x) logD(x) + pg(x) log(1 − D(x))) dx

Since we are summing all over sample x , what we should pay
attention to is

min
G

max
D

f (x) def.
= pr (x) logD(x) + pg(x) log(1 − D(x))

Question: finding optimal D is equivalent with?

∂f (x)
∂D(x)

= 0

30

Let’s examine the loss function

L(D ,G) = Ex∼pr (x)[logD(x)] + Ex∼pg (x)[log(1 − D(x))]

=

∫
x
(pr (x) logD(x) + pg(x) log(1 − D(x))) dx

Since we are summing all over sample x , what we should pay
attention to is

min
G

max
D

f (x) def.
= pr (x) logD(x) + pg(x) log(1 − D(x))

Question: finding optimal D is equivalent with?

∂f (x)
∂D(x)

= 0

30

Let’s examine the loss function

L(D ,G) = Ex∼pr (x)[logD(x)] + Ex∼pg (x)[log(1 − D(x))]

=

∫
x
(pr (x) logD(x) + pg(x) log(1 − D(x))) dx

Since we are summing all over sample x , what we should pay
attention to is

min
G

max
D

f (x) def.
= pr (x) logD(x) + pg(x) log(1 − D(x))

Question: finding optimal D is equivalent with?

∂f (x)
∂D(x)

= 0

30

Let’s examine the loss function

L(D ,G) = Ex∼pr (x)[logD(x)] + Ex∼pg (x)[log(1 − D(x))]

=

∫
x
(pr (x) logD(x) + pg(x) log(1 − D(x))) dx

Since we are summing all over sample x , what we should pay
attention to is

min
G

max
D

f (x) def.
= pr (x) logD(x) + pg(x) log(1 − D(x))

Question: finding optimal D is equivalent with?

∂f (x)
∂D(x)

= 0

30

Optimal value for D

∂f (x)
∂D(x)

=

pr (x)
1

ln 10
1

D(x)
− pg(x)

1
ln 10

1
1 − D(x)

=
1

ln 10

(
pr (x)
D(x)

− pg(x)
1 − D(x)

)
=

1
ln 10

(
pr (x)− (pr (x) + pg(x))D(x)

D(x)(1 − D(x))

)
and so setting this equals to zero gives

D∗(x) =
pr (x)

pr (x) + pg(x)

31

Optimal value for D

∂f (x)
∂D(x)

= pr (x)
1

ln 10
1

D(x)
− pg(x)

1
ln 10

1
1 − D(x)

=
1

ln 10

(
pr (x)
D(x)

− pg(x)
1 − D(x)

)
=

1
ln 10

(
pr (x)− (pr (x) + pg(x))D(x)

D(x)(1 − D(x))

)
and so setting this equals to zero gives

D∗(x) =
pr (x)

pr (x) + pg(x)

31

Optimal value for D

∂f (x)
∂D(x)

= pr (x)
1

ln 10
1

D(x)
− pg(x)

1
ln 10

1
1 − D(x)

=
1

ln 10

(
pr (x)
D(x)

− pg(x)
1 − D(x)

)

=
1

ln 10

(
pr (x)− (pr (x) + pg(x))D(x)

D(x)(1 − D(x))

)
and so setting this equals to zero gives

D∗(x) =
pr (x)

pr (x) + pg(x)

31

Optimal value for D

∂f (x)
∂D(x)

= pr (x)
1

ln 10
1

D(x)
− pg(x)

1
ln 10

1
1 − D(x)

=
1

ln 10

(
pr (x)
D(x)

− pg(x)
1 − D(x)

)
=

1
ln 10

(
pr (x)− (pr (x) + pg(x))D(x)

D(x)(1 − D(x))

)

and so setting this equals to zero gives

D∗(x) =
pr (x)

pr (x) + pg(x)

31

Optimal value for D

∂f (x)
∂D(x)

= pr (x)
1

ln 10
1

D(x)
− pg(x)

1
ln 10

1
1 − D(x)

=
1

ln 10

(
pr (x)
D(x)

− pg(x)
1 − D(x)

)
=

1
ln 10

(
pr (x)− (pr (x) + pg(x))D(x)

D(x)(1 − D(x))

)
and so setting this equals to zero gives

D∗(x) =
pr (x)

pr (x) + pg(x)

31

Global Optimal

D∗(x) =
pr (x)

pr (x) + pg(x)

plugging in the loss we have

L(G ,D∗)

= Ex∼pr (x)[logD∗(x)] + Ex∼pg (x)[log(1 − D∗(x))]

= Ex∼pr (x)

[
log

pr (x)
pr (x) + pg(x)

]
+ Ex∼pg (x)

[
pg(x)

pr (x) + pg(x)

]

= −2 log(2) + Ex∼pr (x)

[
log

2pr (x)
pr (x) + pg(x)

]
+ Ex∼pg (x)

[
2pg(x)

pr (x) + pg(x)

]
= − log(4) + KL(pr || (pr (x) + pg(x))/2) + KL(pg || (pr (x) + pg(x))/2)

32

Global Optimal

D∗(x) =
pr (x)

pr (x) + pg(x)

plugging in the loss we have

L(G ,D∗)

= Ex∼pr (x)[logD∗(x)] + Ex∼pg (x)[log(1 − D∗(x))]

= Ex∼pr (x)

[
log

pr (x)
pr (x) + pg(x)

]
+ Ex∼pg (x)

[
pg(x)

pr (x) + pg(x)

]
= −2 log(2) + Ex∼pr (x)

[
log

2pr (x)
pr (x) + pg(x)

]
+ Ex∼pg (x)

[
2pg(x)

pr (x) + pg(x)

]

= − log(4) + KL(pr || (pr (x) + pg(x))/2) + KL(pg || (pr (x) + pg(x))/2)

32

Global Optimal

D∗(x) =
pr (x)

pr (x) + pg(x)

plugging in the loss we have

L(G ,D∗)

= Ex∼pr (x)[logD∗(x)] + Ex∼pg (x)[log(1 − D∗(x))]

= Ex∼pr (x)

[
log

pr (x)
pr (x) + pg(x)

]
+ Ex∼pg (x)

[
pg(x)

pr (x) + pg(x)

]
= −2 log(2) + Ex∼pr (x)

[
log

2pr (x)
pr (x) + pg(x)

]
+ Ex∼pg (x)

[
2pg(x)

pr (x) + pg(x)

]
= − log(4) + KL(pr || (pr (x) + pg(x))/2) + KL(pg || (pr (x) + pg(x))/2)

32

Digression: Statistical Divergence

▶ A statistical divergence measures how a probability distribution P
differs from another probability distribution Q

▶ Kullback-Leibler divergence:

KL(P || Q)
def.
= EP

[
log

(
P
Q

)]
▶ Jensen-Shannon divergence:

JS(P || Q)
def.
=

1
2
KL(P || (P + Q)/2) +

1
2
KL(Q || (P + Q)/2)

−→ goes to 0 when P and Q are the same

33

Back to Global Optimal...

D∗(x) =
pr (x)

pr (x) + pg(x)

plugging in the loss we have

L(G ,D∗)

= − log(4) + KL(pr || (pr (x) + pg(x))/2) + KL(pg || (pr (x) + pg(x))/2)

= − log(4) + JS(pr || pg)

−→ when pg is trained to be very close to pr , we achieve the
theoretical global optimum L(G∗,D∗) = − log(4)

34

Training GAN

Goodfellow, Ian, et al. Generative Adversarial Nets. NeurIPS 2014

35

Training GAN

−→ but reality is far from theory...

Goodfellow, Ian, et al. Generative Adversarial Nets. NeurIPS 2014

36

Training GAN

−→ but reality is far from theory...

Goodfellow, Ian, et al. Generative Adversarial Nets. NeurIPS 2014

36

Outline

Some Applications of Generative Adversarial Networks

Brief Intros on Neural Network

Generative Model: Generative Adversarial Network

Problems with training GANs

Techniques to improve GANs Training

Wasserstein GAN

37

Hard to achieve a global optimum (Nash Equilibrium)

Simple example:

min
x

max
y

f (x , y) = xy

equivalent with min
x

xy and min
y

−xy

Goodfellow, Ian, et al. Generative Adversarial Nets. NeurIPS 2014

38

Hard to achieve a global optimum (Nash Equilibrium)

Simple example:

min
x

max
y

f (x , y) = xy

equivalent with min
x

xy and min
y

−xy

Goodfellow, Ian, et al. Generative Adversarial Nets. NeurIPS 2014

38

Hard to achieve a global optimum (Nash Equilibrium)
Simple example:

min
x

max
y

f (x , y) = xy

equivalent with min
x

xy and min
y

−xy

Differentiating gives:
∂f
∂x

= y
∂f
∂y

= −x

So when doing GD:

x (k+1) = x (k) − ηy y(k+1) = y(k) + ηx

Salimans, Tim, et al. "Improved techniques for training gans." NeurIPS 2016

39

Supports of pr and pg concentrates in lower dimension

Meaning: for high-dimensional data, pr and pg can be very hard to
train to match each others
−→ our discriminator has easy time to distinguish real and fake
samples

40

Vanishing Gradient

Recall that

min
G

max
D

L(D ,G) = Ex∼pr (x)[logD(x)] + Ex∼pg (x)[log(1 − D(x))]

−→ if the discriminator does a great job (D(x) = 1 for all x ∼ pr (x)
and D(x) = 0 for all x ∼ pg(x)), the gradient of the loss function
drops down to close to zero
−→ SGD update no longer works

41

Mode Collapse

Mode Collapse: the generator always produces same outputs in
training

Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017

42

Lack of Proper Evaluation Metric

When training GANs:
▶ We can check whether if the loss decreases – but it does not tell the

whole story (recall vanishing gradient slide)
▶ How to evaluate the generated images’ quality? (asking human

being?)
▶ i.e. lack an objective function to compare performance of different

architectures

43

Outline

Some Applications of Generative Adversarial Networks

Brief Intros on Neural Network

Generative Model: Generative Adversarial Network

Problems with training GANs

Techniques to improve GANs Training

Wasserstein GAN

44

To read more

▶ This part is based on Sectio 3 of Salimans, Tim, et al. "Improved
techniques for training gans." NeurIPS 2016

▶ Related: Arjovsky and Bottou. "Towards Principled Methods for
Training Generative Adversarial Networks." ICLR 2017.

▶ Also related: Huszár "How (not) to train your generative model:
Scheduled sampling, likelihood, adversary?." ICLR 2015.

▶ Arguably the original GAN proposal of Goodfellow et al. (2014)
worked because they switched the loss from using asymmetric
Kullback-Leibler divergence to symmetric Jensen-Shannon divergence

45

Feature Matching

▶ Objective: lessen the stability of GANs training
▶ Idea: discriminator to inspect whether the generator’s output

matches expected statistics of the real samples
▶ Implementation: training the generator to match the expected value

of the features on an intermediate layer of the discriminator
▶ Denoting f (x) the summary on an intermediate layer of the

discriminator, now the objective is

∥Ex∼pr f (x)− Ex∼pz f (G(z))∥2
2

▶ In practice: f (x) can be mean or median (summary statistics) of the
features

46

Minibatch Discrimination

▶ Objective: avoid mode-collapse in the generator
▶ Idea: the discriminator is able to account for the relationship between

training data points in one batch, instead of each point independently
▶ Implementation: In one minibatch, we approximate the closeness

between every pair of samples, denoting cb(xi , xj)i,j∈[n], and get the
overall summary of one data point by summing up how close it is to
other samples in the same batch

ob(xi) =
∑

j

cb(xi , xj)

▶ Then we add ob(xi) to the input of the model

47

Historical Averaging

▶ Objective: bypass the low-dimensional manifold support problem and
saddle points for the non-convex minimax optimization

▶ Idea: adding to the generator and the discriminator’s cost a term

∥θ − 1
t

t∑
i=1

θ(i)∥2
2

where θ(i) is the parameters at the previous time i
▶ Implementation: scale better (i.e. faster training for large dataset) by

adding only θ(i − 1) to the i -th training iteartion (online learning)

48

One-sided label smoothing

▶ Objective: soften the discriminator value to avoid network’s
vulnerability

▶ Idea: smoothing label of discriminator network with α for positive
label (or 1 if the input is real data), and β for negative label

▶ The optimal D is then

D(x) =
αpr (x) + βpg(x)

pr (x) + pg(x

▶ Example: α = 0.9 and β = 0.1

49

Virtual Batch Normalization

▶ Batch-norm1 is one of the most popular tricks for fastening and
stabilizing the training of deep neural networks

▶ The idea of batch-norm is very simple: normalized each layer’s input
(activation) with their mean and covariance

▶ However: batch-norm can make output of a neural network highly
dependent on some other inputs in the same minibatch

▶ Idea: in virtual batch-norm, we normalize the input based on a
collection of fixed inputs (called reference batch)

▶ Implementation: virtual batch-norm is more expensive (forward pass
on two minbatches of data) – so only used in the generator network

1Ioffe and Szegedy . "Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift" (2015)

50

Better metric accounting for Distribution Similarity

▶ We already argue KL is not the best divergence for GAN loss, but
also the JS divergence: when the two distributions lies on low
dimensional manifold, it is hard to match them with gradient descent

▶ This is why the concept of Wasserstein GAN was introduced 2

2Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017

51

Outline

Some Applications of Generative Adversarial Networks

Brief Intros on Neural Network

Generative Model: Generative Adversarial Network

Problems with training GANs

Techniques to improve GANs Training

Wasserstein GAN

52

Previously

min
G

max
D

L(D ,G) = Ex∼pr (x)[logD(x)] + Ex∼pg (x)[log(1 − D(x))]

GANs training suffers from many problems:
▶ Stability of the optimization scheme
▶ Vanishing gradient
▶ Mode collapse

with many training fixes

53

Better metric accounting for Distribution Similarity

▶ We already argue KL is not the best divergence for GAN loss, but
also the JS divergence: when the two distributions lies on low
dimensional manifold, it is hard to match them with gradient descent

▶ This is why the concept of Wasserstein GAN was introduced 3

3Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017

54

Statistical Distance

▶ Distance in Rd? What is the distance between two vectors? Two
matrices?

▶ What if we want to measure the distance between two probability
distributions P and Q?

▶ Last week: Kullback-Leibler and Jensen-Shannon divergences

55

Statistical Distance

▶ Distance in Rd? What is the distance between two vectors? Two
matrices?

▶ What if we want to measure the distance between two probability
distributions P and Q?

▶ Last week: Kullback-Leibler and Jensen-Shannon divergences

55

Statistical Distance

▶ Distance in Rd? What is the distance between two vectors? Two
matrices?

▶ What if we want to measure the distance between two probability
distributions P and Q?

▶ Last week: Kullback-Leibler and Jensen-Shannon divergences

55

Reminder: Why do we care about the prob. distance?

In GAN architecure, we have pr (x) and pg(x)
where pr (x) the distribution of real dataset

pg(x) the generator learned distribution over data x

56

Background on Optimal Transport – next topic

57

Wasserstein-1 distance as a GAN metric

W1(pr , pg)
def.
= min

γ∈Π(pr ,pg)
E(x ,x ′)∼γ∥x − x ′∥

▶ Also called Earth-Mover distance (EMD)
▶ Imagine the two distributions are a certain amount of piles of dirt

over a region
▶ γ is one way to transport one pile of dirt to the other
▶ Therefore we have the constraint∑

x

γ(x , x ′) = pg(x ′)∑
x ′

γ(x , x ′) = pr (x)

▶ EMD is the minimum cost of moving them

58

Wasserstein-1 distance as a GAN metric

W1(pr , pg)
def.
= min

γ∈Π(pr ,pg)
E(x ,x ′)∼γ∥x − x ′∥

−→ empirical version

W1(pr , pg)
def.
= min

γ∈Π(pr ,pg)

∑
x ,x ′

γ(x , x ′)∥x − x ′∥

When using W1 as a metric, we have the WGAN

Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017

59

Wasserstein-1 vs JS/KL as a GAN loss?

It’s all about the smoothness (i.e. differentiable). Example 1 in the
paper

▶ Suppose z ∼ U [0, 1],
▶ P0 is the distribution of (0, z) ∈ R2

▶ Pθ this distribution of gθ(z) = (θ, z) with θ ∈ (0, 1) (can view this as
our generator distribution)

Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017

60

Wasserstein-1 vs JS/KL as a GAN loss?
What happens when one calculate these divergence? When θ ̸= 0

▶ Kullback-Leibler:

KL(P0,Pθ) = KL(Pθ,P0) =
∑

x=0,y∼U [0,1]

px log

(
1
0

)
= +∞

▶ Jensen-Shannon:

JS(P0,Pθ) = 1/2

 ∑
x=0,y∼U [0,1]

1 log
1

1/2
+

∑
x=θ,y∼U [0,1]

1 log
1

1/2

 = log2

▶ EMD:
W (P0,Pθ) = |θ|

When θ = 0 −→ KL(P0,Pθ) = JS(P0,Pθ) = 0 but

W (P0,Pθ) = 0 = |θ|

61

Wasserstein-1 vs JS/KL as a GAN loss?

Conclusion from the simple example:
▶ KL and JS divergences are not smooth (differentiable) everywhere
▶ Using Wasserstein-1 distance fix this issue

62

Wasserstein-1 as a GAN loss?

W1(pr , pg)
def.
= min

γ∈Π(pr ,pg)
E(x ,x ′)∼γ∥x − x ′∥

Problem: this formulation is highly intractable
−→ Kantorovich-Rubinstein duality for W1 distance

W1(pr , pg) = sup
∥f ∥L≤1

Ex∼pr [f (x)]− Ex∼pg [f (x)]

Remark 6.5, Villani, Cédric. Optimal transport: old and new. Vol. 338.
Berlin: springer, 2009.

63

Wasserstein-1 as a GAN loss?

In other words, with the W1 distance, we move from the loss

min
G

max
D

L(D ,G) = Ex∼pr (x)[logD(x)] + Ex∼pg (x)[log(1 − D(x))]

to
max

w
Ex∼pr [fw (x)]− Ez∼pz [fw (gθ(z))]

Important improvements:
▶ From minimax loss (hard to solve) to single maximization
▶ fw is a parameterization: now we can use any architectures of neural

networks to train

64

Wasserstein-1 as a GAN loss?

Theorem 3: with the loss

W1(pr , pg) = max
w

Ex∼pr [fw (x)]− Ez∼pz [fw (gθ(z))]

Under additional technical assumption (we skip it here, but it relates
to local Lipschitz continuity), we have

∇wW1(pr , pg) = −Ez∼pz [∇w fw (gθ(z))]

Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017

65

Wasserstein-1 as a GAN loss?

∇wW1(pr , pg) = −Ez∼pz [∇w fw (gθ(z))]

Intuition:
▶ Now the “discriminator” D is not a direct critic of telling the fake

samples apart from the real ones anymore.
▶ Instead, it is trained to learn fw to help compute Wasserstein distance.
▶ Loss function decreases −→ Wasserstein-1 distance gets smaller
▶ Generator gθ output becomes closer to the real data distribution (or

pg becomes very similar to pr)

66

Training WGAN

Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017

67

Fixing vanishing gradient in some settings

Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017

68

Better at image generation task

Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017

69

However...

From the paper: ‘Weight clipping is a clearly terrible way to enforce a
Lipschitz constrain [...] we leave the topic of enforcing Lipschitz
constraints in a NN setting for further investigation‘

Arjovsky et. al. "Wasserstein generative adversarial networks." ICML 2017

70

Difficulties with Weight Constraints

▶ Clipping the weights inside a range (e.g. (-0.01, 0.01)) actually can
lead to optimization difficulties

Gulrajani, Ishaan, et al. "Improved training of wasserstein gans." NeuRIPS
2017.

71

WGAN-GP: a variant of GAN variant...

Introducing a regularization term that penalize the gradient to the
loss

W1(pr , pg) = max
w

Ex∼pr [fw (x)]− Ez∼pz [fw (gθ(z))]

+ λEz∼pz [(∥∇w fw (gθ(z))∥2 − 1)2]

▶ This is equivalent to constraining the function f to be 1-Lipschitz
▶ Regularization terms is still differentiable

72

Training WGAN-GP

Gulrajani, Ishaan, et al. "Improved training of wasserstein gans." NeuRIPS
2017.

73

WGAN-GP vs. WGAN vs. other GANs

74

Conclusion

▶ Using Wasserstein-1 distance is better for GAN training (taken into
account we are using the same architecture for generator), which
leads to significantly improvement in image-generation task

▶ However, clipping weight as a way to enforce Lipschitz continuity is
some kind of mysterious engineering technique

▶ With adding regularization term to enforce the norm of gradient to be
equal to 1, WGAN-GP suffers less instability problem in training

75

	Some Applications of Generative Adversarial Networks
	Brief Intros on Neural Network
	Generative Model: Generative Adversarial Network
	Problems with training GANs
	Techniques to improve GANs Training
	Wasserstein GAN

