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Some Practical Info for this Course

▶ Each Thursday from now (April) to end of June
▶ First two sessions for each theme is lecture + having fun with

practical Python (technically Jupyter) notebook for coding
▶ For interaction during classes: it’s better for you to think as well, so

prepare for some derivations/questions
▶ Four presentations as grading, final note is the average
▶ Advice: you should start working with the assigned paper as early as

possible, because you might have some questions related to the paper
and can check with me in the second session for each of the topics
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Some Practical Info for this Course

Notice that:
▶ Group ordering will change for each topic
▶ 7 people - 3 groups (2-2-3) – expect that the group with 3 people will

have to present more
▶ For now the plan for topic will be: Sparse regression with Lasso,

Optimal Transport with Gromov-Wasserstein distance, and
Flow-based Model (Normalizing Flows)
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Overview

▶ Supervised learning with Linear Model
▶ The Lasso
▶ Solving Lasso with non-smooth optimization: proximal operators
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Supervised Learning

▶ y ∈ R, x ∈ Rp , ε ∼ N (0, σ2), f : Rp → R
▶ General relationship

y = f (x) + ε

▶ Goal: learn f from some realizations of (x, y)
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Linear Regression

y = f (x) + ε

Goal: learn f from some realizations of (x, y)

▶ Assumption: f is linear:
f (x) = x⊤β

▶ Question: what should we target now for learning f ?

▶ Answer: Estimate β from some realizations of (x, y)
▶ Question: how can we estimate β given data (xi , yi )

n
i=1?

7



Linear Regression

y = f (x) + ε

Goal: learn f from some realizations of (x, y)

▶ Assumption: f is linear:
f (x) = x⊤β

▶ Question: what should we target now for learning f ?
▶ Answer: Estimate β from some realizations of (x, y)
▶ Question: how can we estimate β given data (xi , yi )

n
i=1?

7



Linear Least Squares

β̂ = argmin
β

n∑
i=1

1
2
(y − x⊤β)2

8



Maximum (Log) Likelihood?

y = f (x) + ε

▶ For one sample, define the likelihood:

P(y = yobs | x = xobs) = P(ε = yobs − x⊤
obsβ)

=
1√

2πσ2
exp

(
− (yobs − x⊤

obsβ)
2

σ2

)
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Maximum (Log-)Likelihood?

▶ For n i.i.d. samples (xi , yi )
n
i=1, the likelihood:

L(β) def.
= P(y1, . . . , yn | x1, . . . xn)

= P(y1 | x1)× · · · × P(yn | xn)

Maximum Log-likelihood Estimatior:

βMLE = argmax
β

logL(β)

= argmin
β

n∑
i=1

1
2
(y − x⊤β)2
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Matrix Notations

▶ X = [x1, · · · , xn ]
⊤ ∈ Rn×p , y ∈ Rn

▶
∑n

i=1
1
2
(y − x⊤β)2 =

1
2
∥y − Xβ∥2

▶ ℓ2 norm of a vector: ∥v∥ =
√∑n

i=1 v2
n
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Closed-form Solution in low-dimension

Objective:

β̂ = argmin
β
∥y − Xβ∥2

▶ Question: low-dimension: n > p – what is the closed-form?

β̂ = (X⊤X)−1X⊤y
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Maximum Likelihood Estimator/Linear Least Square

Objective:

β̂MLE = argmin
β
∥y − Xβ∥2

▶ Pros:
▶ Consistent: limn→∞ β̂MLE = β∗.
▶ Clear statistical framework.

▶ Cons:
▶ Can behave badly when f is misspecified (i.e. f is not linear).
▶ Ill-posed when n < p: X⊤X is not invertible.
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So... what do we do when n < p?

Ockham’s razor: only a few coefficients in β are important

▶ Or: induce some sparsity on β̂

▶ ℓ0 (pseudo)-norm: number of non-zero coefficients in β

ℓ0(β)
def.
=

n∑
i=1

1βi ̸=0 = |supp(β)|
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Subset Selection/Matching Pursuit

βsubset
def.
= argmin

β

1
2
∥y − Xβ∥2 subject to ∥β∥0 ≤ t

where t > 0 is an integer controlling the sparsity of the solution

Problems:
▶ Non-convexity
▶ Instability: adding a single sample may completely change β and

hence its support
▶ NP-Hard to solve (i.e. very long time to solve)
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Least Absolute Shrinkage and Selection Operator

▶ Idea: relax non-convexity from the
ℓ0 norm to a convex problem

∥β∥1
def.
=

n∑
i=1

|βi |

▶ Which makes

βlasso
def.
= argmin

β

1
2
∥y − Xβ∥2

subject to ∥β∥1 ≤ t

where t > 0 controls the sparsity
of the solution
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Lagrangian Formulation

βlasso
def.
= argmin

β

1
2
∥y − Xβ∥2 + λ∥β∥1

where λ > 0 controls the sparsity of the solution

▶ Promote sparsity: there is a threshold λmax such that λ > λmax

implies βlasso = 0
▶ Question: how to find this λmax?
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Finding λmax

Reminder: the sub-gradient ∂f : a vector g ∈ Rp is a subgradient of
f : Rp → R at x if

f (y) ≥ f (x) + g⊤(y − x)

▶ Idea: β = 0 is the solution to the lasso iff:

0 ∈ ∂β=0

(
1
2
∥y − Xβ∥2 + λ∥β∥1

)

▶ We know that

∂

(
1
2
∥y − Xβ∥2

)
= X⊤(y − Xβ)

∂β=0 (λ∥β∥1) = [−λ, λ]p

▶ So: for every i ∈ [p]: (X⊤y)i ∈ [−λ, λ]
λmax = ∥X⊤y∥∞
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Why sparsity?

Figure: Lasso Path on Boston dataset

▶ Perform model selection and estimation at the same time: which
variables in x are important

▶ Sparsity = faster computation and solvers
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Why sparsity?

▶ Perform model selection and estimation at the same time: which
variables in x are important

▶ Sparsity = faster computation and solvers
▶ Example: p = 1000,n = 1000, computing Xβ takes approx.

n × p = 106 operations
▶ But: if we know only 10 of the coefficients in β is non-zero, it takes

only 104 operations – or 100 times faster
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The Simplest Lasso
▶ n = 1, p = 1, x = 1
▶ The problem reduces to

min
β

1
2
(y − β)2 + λ|β|

▶ Proximity operator:

prox|·|(y , λ)
def.
= argmin

β

1
2
(y − β)2 + λ|β|

▶ Solution: soft-thresholding

st(y , λ) def.
= prox|·|(y , λ) =


0, if |y | ≤ λ

y − λ if y > λ

y + λ if y < −λ
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Soft-Thresholding

Nice property: separability, if x , β ∈ Rp

prox∥·∥1
(x , λ) = argmin

β

1
2
(x − β)2 + λ|β| = (st(x1, λ), . . . st(xp , λ))
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But How About p-dimension problem?

ISTA: Iterative Soft-Thresholding Algorithm

▶ Recall: βlasso = argminβ
1
2
(y − Xβ)2 + λ|β|

▶ Gradient of the smooth term:

∇β

(
1
2
(y − Xβ)2

)
= X⊤(Xβ − y)

▶ ISTA:
βt+1 = prox∥·∥1

(βt − ηX⊤(Xβ − y), λη)

▶ Question: Where does this come from?
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A Reminder: Convex Optimization 101

▶ Recall: Gradient descent, minimize f (x ) for a smooth f :

Iterate xt+1 = xt − η∇f (xt )

▶ Its quadratic surrogate:

xt+1 = argmin
x

f (xt ) +∇f (xt )⊤(x− xt ) +
1
2η
∥x− xt∥22
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Back to ISTA...

▶ The quadratic surrogate + ℓ1 regularization term:

βt+1 = argmin
β

f (βt ) +∇f (βt )⊤(β − βt ) +
1
2η
∥β − βt∥22 + λ∥β∥1

= argmin
β
∇f (βt )⊤(β − βt ) +

1
2η
∥β − βt∥22 + λ∥β∥1

= argmin
β

1
2η
∥β − (βt − η∇f (βt ))∥22 + λη∥β∥1

def.
= prox∥·∥1

(βt − X⊤(Xβ − y), λη)

▶ Take f (β) =
1
2
(y − Xβ)2
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Back to ISTA...

βt+1 = prox∥·∥1
(βt − ηX⊤(Xβ − y), λη)

▶ Due to the prox operator many coefficients are 0
▶ One iteration takes O(min(n , p)× p)

−→ problematic for large p
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Coordinate Descent

Idea: freeze others, update only one coefficient βj at each iteration,
i.e.

βt+1
j = prox∥·∥1

(βt
j − ηX⊤

∗,j (Xβ − y), λη)

and βt+1
k = βt

k for all k ̸= j

▶ Iteration cost O(n) if we know the residual r = Xβt − y
▶ Update residual: Once we update the coordinate j :

r← r + (βt+1
j − βt

j )X∗,j
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A Bit More Advanced: FISTA - Fast(er) ISTA

Initialize β1 = z1 = 0,γ1 = 1, then for each update
▶ βt+1

j = prox∥·∥1
(zt − ηX⊤(Xzt − y), λη)

▶ γt+1 =
1 +

√
1 + 4(γt )2

2

▶ z t+1 = βt+1 +
γt − 1
γt+1 (βt+1 − βt )

Some form of acceleration, which make convergence rate of fista
O(1/T 2) instead of O(1/T ) of ISTA
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Parameter Selection for the Lasso

Figure: Lasso Path on Boston dataset

βlasso
def.
= argmin

β

1
2
∥y − Xβ∥2 + λ∥β∥1

▶ We have talked about the role of λ as to control the sparsity level –
but which sparsity level is optimal?
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Selection of sparsity parameter λ

Caveat: to simplify things, definitions are taken from sklearn page –
for a specific theoretical formula for the Lasso, check Zou et al. (2007)

▶ Equivalent to model selection: we can do that via a criterion
▶ Akaike’s Information Criterion (AIC):

AIC(L(β̂)) def.
= −2 log(L(β̂)) + 2d

where d is the degrees of freedom (number of parameters of models)

▶ Bayesian Information Criterion (BIC):

BIC(L(β̂)) def.
= −2 log(L(β̂)) + log(n)2d

▶ Question: What can we say about these two criteria as a function of
the likelihood?

Zou, Hui, Trevor Hastie, and Robert Tibshirani. “On the degrees of freedom
of the lasso.” The Annals of Statistics 35.5 (2007): 2173-2192.
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Selection of sparsity parameter λ

▶ Question: What’s the formula for AIC and BIC in our settings?
(i.e. linear regression with with least squares loss and Gaussian noise
ε ∼ N (0, σ2)?)

AIC(β̂λ) = n log(2πσ2) +
1
σ2 ∥y − Xβ̂λ∥2 + 2d

BIC(β̂λ) = n log(2πσ2) +
1
σ2 ∥y − Xβ̂λ∥2 + log(n)d

▶ The first term on the RHS is a constant, so:

λAIC
def.
= argmin

λ

1
σ2 ∥y − Xβ̂λ∥2 + 2d

λBIC
def.
= argmin

λ

1
σ2 ∥y − Xβ̂λ∥2 + log(n)d

▶ Note: we also have to estimate σ2 from the residual
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Selection of sparsity parameter λ – with AIC/BIC

Pros:
▶ Relatively fast as the regularization path only computed once
▶ Guarantee to be optimal theoretically

Cons:
▶ Theoretical guarantees only with large n (asymptotic)
▶ Estimation of the term d (degrees of freedom) is tricky when n ≪ p
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In Practice: K-Folds Cross-Validation

Cross-validation: based on sklearn page:
scikit-learn.org/stable/modules/cross_validation.html

33
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In Practice: K-Folds Cross-Validation

▶ Performing model fitting on each (K-1) folds of the training data,
evaluate on the remaining fold

▶ Which performance measure? (accuracy, MSE – mean squared errors,
etc.)
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In Practice: K-Folds Cross-Validation

▶ Easy with sklearn: sklearn.model_selection and even better:
sklearn.linear_model.LassoCV
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Next session

▶ Brief intro on a bit more advanced: hyper-parameter selection for
Lasso with bi-level optimization

▶ Practical session with Jupyter notebook: playing with
sklearn.linear_model.Lasso, etc. , and some optimization scheme
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