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Previously...
Lasso: Least Absolute Shrinkage and Selection Operator

βlasso
def.
= argmin

β

1
2n

∥y − Xβ∥2 + λ∥β∥1

where λ > 0 controls the sparsity of the solution

−→ Promote sparsity: there is a threshold λmax such that λ > λmax

implies βlasso = 0
4
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Adaptive (weighted) Lasso

βlasso
def.
= argmin

β

1
2n

∥y − Xβ∥2 + λ∥β∥1

▶ Only one λ that dictates sparsity degree of all βj

▶ What if we want a scheme that is adaptive: coefficients with large
magnitude (absolute value) receive smaller sparse penalty?

−→ Lasso with adaptive weights on ℓ1-regularization

βlasso
def.
= argmin

β

1
2n

∥y − Xβ∥2 + λ

p∑
j=1

wj |βj |

where wj ∈ [0, 1).
−→ Optimization problem is still convex in β

Zou H. (2006), ‘The adaptive lasso and its oracle properties’, Journal of the
American Statistical Association 101(476), 1418–1429.
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Adaptive (weighted) Lasso

βlasso
def.
= argmin

β

1
2n

∥y − Xβ∥2 + λ

p∑
j=1

wj |βj |

▶ Typically wj are initialized as

wj =


1

|βinit
j |

if βinit
j ̸= 0

0 if βinit
j = 0

▶ But what is this βinit?
▶ Just put a standard lasso for finding βinit (called screening operation)
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Adaptive (weighted) Lasso

Bühlmann, P., & Geer, S. A. van de. (2011). Statistics for high-dimensional
data: Methods, theory and applications. Springer.
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Adaptive (weighted) Lasso

βlasso
def.
= argmin

β

1
2n

∥y − Xβ∥2 + λ

p∑
j=1

|wjβj |

▶ Optimization problem is still convex in β, but how to solve now that
there is multiple value of λ possible?

▶ Question: can we reformulate the adaptive lasso back to the original
lasso?

▶ Hint: use the change of variable β̃ as some form of w and β

▶ To the whiteboard...
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Adaptive (weighted) Lasso

β̃lasso
def.
= argmin

β̃

1
2n

∥y − X̃β̃∥2 + λ|β̃|1

and this means
β̃lasso = W−1βlasso

i.e. the solution of the adaptive Lasso is just a rescaling of the
solution of original Lasso
−→ enjoys theoretical guarantee (consistency, asymptotic normality)
from the Lasso without additional assumptions

10



Adaptive (weighted) Lasso

In sklearn.linear_model.Lasso

https://scikit-learn.org/stable/modules/generated/sklearn.linear_
model.Lasso.html
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A cousin of Lasso: Elastic-Net

▶ A problem with Lasso: when there are high-correlations between
variables, e.g. X∗,i and X∗,j empirically Lasso select one but not
both...

▶ At most n variables will be selected by the lasso, so problematic when
n ≪ p

▶ A solution: adding ℓ2 norm to the lasso optimization problem: elastic
net

Zou, Hui; Hastie, Trevor (2005). "Regularization and Variable Selection via
the Elastic Net". Journal of the Royal Statistical Society, Series B. 67 (2):
301–320.
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Elastic-Net

βenet
def.
=

1
2n

argmin
β

∥y − Xβ∥2 + λ1∥β∥1 +
λ2

2
∥β∥2

2

but now we have two hyper-parameters λ1 and λ2?
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Elastic-Net

we can just set θ =
λ2

λ1 + λ2
∈ [0, 1], then the equivalent problem is

βenet
def.
= argmin

β

1
2n

∥y − Xβ∥2 + (1 − θ)∥β∥1 +
θ

2
∥β∥2

2

−→ enet-path interpolates between Lasso and Ridge regression path

Image from Gabriel Peyré’s twitter:
https://twitter.com/gabrielpeyre/status/1318054267685621761
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Elastic-Net

▶ Elastic-net solutions: interpolates between Lasso and Ridge regression
solutions

▶ Question: this gives hint on finding the solution of Enet? (remember
how we find solution for Lasso and for Ridge?)
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Elastic-Net, in Orthogonal Design settings

βenet
def.
= argmin

β

1
2n

∥y − Xβ∥2
2 + λ1∥β∥1 +

λ2

2
∥β∥2

2

in the case
1
n

X⊤X = Id, then β̂LS = 1/n(X⊤X)−1X⊤y = X⊤y/n

so for the first term:

argmin
β

1
2n

∥y − Xβ∥2

= argmin
β

1
2n
{
y⊤y + β⊤β − 2y⊤Xβ

}
= argmin

β

1
2n

{
y⊤y + nβ⊤β + 2nβ⊤β̂LS + n(β̂LS )⊤β̂LS − n(β̂LS )⊤β̂LS

}
= argmin

β

1
2n

{
(β̂LS − β)⊤(nβ̂LS − β) + y⊤(Id − X⊤X)y

}
= argmin

β

1
2
∥β̂LS − β∥2

2
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Elastic-Net, in Orthogonal Design settings

βenet
def.
= argmin

β

1
2n

∥y − Xβ∥2
2 + λ1∥β∥1 +

λ2

2
∥β∥2

2

in the case
1
n

X⊤X = Id

▶ This means

βenet = argmin
β

1
2

p∑
j=1

(β̂LS
j − βj )

2 + λ1

p∑
j=1

|βj |+
λ2

2

p∑
j=1

β2
j

▶ The problem is separable: for each j

βenet
j = argmin

β

1
2
(β̂LS

j − βj )
2 + λ1|βj |+

λ2

2
β2

j

= argmin
β

1
2

(
βj −

β̂LS
j

1 + λ2

)2

+
λ1

1 + λ2
|βj |

def.
= prox∥·∥1

(
βj −

β̂LS
j

1 + λ2
,

λ1

1 + λ2

)
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Elastic-Net

This means: in general settings, we can find solution of Enet with
iterative optimization algorithm (from last session):

▶ ISTA, FISTA
▶ Coordinate descent (implemented in sklearn)
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Other Variants

▶ Group lasso
▶ Lasso for data matrix with missing elements
▶ Debiased Lasso

...which we will wait for presentations next week :-)
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Reminder

Variants of Lasso

Hyperparameter Optimization
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Previously...

Lasso: Least Absolute Shrinkage and Selection Operator

βlasso
def.
= argmin

β

1
2
∥y − Xβ∥2 + λ∥β∥1

where λ > 0 controls the sparsity of the solution

▶ Choose λ based λmax = ∥X⊤y∥∞
▶ Reminder: when λ > λmax all βj will shrink to zero
▶ But λ to select? – cross-validation/Information Criterion
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Hyperparameter selection, the popular way

▶ Cross validation
▶ Criterion (AIC/BIC) that control model complexity

▶ Formalization: for Lasso

β̂(λ) ∈ argmin
β∈Rp

1
2n

∥ytrain − Xtrainβ∥2 + λ∥β∥1

▶ Subject to:
L(λ) = min

λ
∥yval − Xvalβ̂(λ)∥2

−→ Today: hyper-parameter selection with bi-level optimization

22
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Hyperparameter Selection: Bilevel Optimization?

L(β̂(λ), λ) = min
λ

∥yval − Xvalβ̂(λ)∥2︸ ︷︷ ︸
outer optimization problem

s.t. β̂(λ) ∈ argmin
β∈Rp

h(β, λ)︸ ︷︷ ︸
inner optimization problem

Caveat: for the moment we deviate from Lasso, and assume the case
h is at least twice-differentiable
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Grid-search as a zero-order optimization method

L(β̂(λ), λ) = min
λ

∥yval − Xvalβ̂(λ)∥2︸ ︷︷ ︸
outer optimization problem

s.t. β̂(λ) ∈ argmin
β∈Rp

h(β, λ)︸ ︷︷ ︸
inner optimization problem

Grid-search with cross-validation (assume 1-fold CV):
▶ Defines a range of values for λ

▶ For each λ, solves the inner problem, then calculate the outer loss
▶ Choose λ ∈ grid(λ) that that minimizes the outer loss
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Grid-search as a zero-order optimization method

10 3 10 2 10 1 100

/ max

5000

10000

15000

20000

25000

30000

y
yva

l
2 2

0-th order method (grid search)

Grid-search with cross-validation (assume 1-fold CV):
▶ Defines a range of values for λ

▶ For each λ, solves the inner problem, then calculate the outer loss
▶ Choose λ ∈ grid(λ) that that minimizes the outer loss

Example from: https://qb3.github.io/sparse-ho/index.html
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First-order hyperparameter-optimization?

L(β̂(λ), λ) = min
λ

∥yval − Xvalβ̂(λ)∥2︸ ︷︷ ︸
outer optimization problem

s.t. β̂(λ) ∈ argmin
β∈Rp

h(β, λ)︸ ︷︷ ︸
inner optimization problem

▶ Idea: gradient descent?

λ(t+1) = λ(t) − η∇L(β̂(λ), λ(t))

26
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First-order hyperparameter-optimization

L(β̂(λ), λ) = min
λ

∥yval − Xvalβ̂(λ)∥2︸ ︷︷ ︸
outer optimization problem

s.t. β̂(λ) ∈ argmin
β∈Rp

h(β, λ)︸ ︷︷ ︸
inner optimization problem

▶ Previous calculus classes tell us that

∇L(β̂(λ), λ) = ∂λβ̂
(λ)⊤∇1L(β̂(λ), λ) +∇2L(β̂(λ), λ)

▶ Question: what is problematic in computation of this gradient?

▶ β̂(λ) is the solution of another optimization problem...
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Implicit Function Theorem to the rescue
Remember the inner problem:

β̂(λ) ∈ argmin
β∈Rp

h(β, λ)

▶ β̂(λ) is an implicit function of λ, characterized by

∇1h(β̂(λ), λ) = 0

▶ Implicit Function Theorem: if L and h are continuously
differentiable, then there exists a unique β̂(λ), and we have

∂λβ̂
(λ) = −[∇2

1h(β̂
(λ), λ)]−1∇2

1,2h(β̂
(λ), λ)

= −[Hβ,h ]
−1 ∇2

1,2h(β̂
(λ), λ)

▶ Question: where does this equation come from?
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First-order hyperparameter-optimization

L(β̂(λ), λ) = min
λ

∥yval − Xvalβ̂(λ)∥2︸ ︷︷ ︸
outer optimization problem

s.t. β̂(λ) ∈ argmin
β∈Rp

h(β, λ)︸ ︷︷ ︸
inner optimization problem

▶ So:

∇L(β̂(λ), λ) = ∂λβ̂
(λ)⊤∇1L+∇2L

= −[∇2
1,2h ]

⊤[Hβ,h ]
−1∇1L+∇2L

▶ But: any problem remains?
▶ Inverting Hessian is generally very costly, and not possible when

n < p...

Y. Bengio. Gradient-based optimization of hyperparameters. Neural
computation, 12(8):1889–1900, 2000.
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First-order hyperparameter-optimization

∇L(β̂(λ), λ) = −[∇2
1,2h ]

⊤[Hβ,h ]
−1∇1L+∇2L

Pedregosa (2016): at iteration k we have a tolerance ϵk small enough

1. With λk , solve the inner optimization problem, obtain β̂λk

2. Approximate [Hβ,h ]
−1∇1L by solving for qk s.t

∥Hβ̂λk ,hqk −∇1L∥ ≤ ϵk

3. Approximate ∇L(β̂(λ), λ) with

pk = −[∇2
1,2h ]

⊤qk +∇2L(β̂λk , λk )

4. Update λk+1 = ProjGD(λk , pk , η)

−→ no inversion of the Hessian
Pedregosa, F. (2016). Hyperparameter optmimization with approximate

gradient. In International conference on machine learning (pp. 737-746). PMLR.
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First-order hyperparameter-optimization
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0-th order method (grid search)

▶ Still: we requires h to be smooth
▶ But what about the case for Lasso?

h(β, λ) =
1
2
∥y − Xβ∥2 + λ∥β∥1
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First-order hyperparameter-optimization
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−→ Check the work of Bertrand et al. (2020)
▶ Also leverage the sparsity induced by the Lasso for the computation
▶ Faster than implicit forward differentiation methods

Bertrand, Q., Klopfenstein, Q., et al. (2020). Implicit differentiation of
Lasso-type models for hyperparameter optimization. Proceedings of the 37th
International Conference on Machine Learning
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