Sparsity in Learning with the LASSO 2

Binh Nguyen - Telecom Paris

M2DS Alternants Research Seminar Course; 14/04/2022

Outline

Reminder

Variants of Lasso

Hyperparameter Optimization

Outline

Reminder

Variants of Lasso

Hyperparameter Optimization

Previously...

Lasso: Least Absolute Shrinkage and Selection Operator

$$
\boldsymbol{\beta}_{\text {lasso }} \stackrel{\text { def. }}{=} \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda\|\boldsymbol{\beta}\|_{1}
$$

where $\lambda>0$ controls the sparsity of the solution
\longrightarrow Promote sparsity: there is a threshold $\lambda_{\max }$ such that $\lambda>\lambda_{\max }$ implies $\beta_{\text {lasso }}=0$

Outline

Reminder

Variants of Lasso

Hyperparameter Optimization

Adaptive (weighted) Lasso

$$
\boldsymbol{\beta}_{\text {lasso }} \stackrel{\text { def. }}{=} \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|^{2}+\lambda\|\boldsymbol{\beta}\|_{1}
$$

- Only one λ that dictates sparsity degree of all $\boldsymbol{\beta}_{j}$
- What if we want a scheme that is adaptive: coefficients with large magnitude (absolute value) receive smaller sparse penalty?

Zou H. (2006), 'The adaptive lasso and its oracle properties', Journal of the American Statistical Association 101(476), 1418-1429.

Adaptive (weighted) Lasso

$$
\boldsymbol{\beta}_{\text {lasso }} \stackrel{\text { def. }}{=} \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|^{2}+\lambda\|\boldsymbol{\beta}\|_{1}
$$

- Only one λ that dictates sparsity degree of all $\boldsymbol{\beta}_{j}$
- What if we want a scheme that is adaptive: coefficients with large magnitude (absolute value) receive smaller sparse penalty?
\longrightarrow Lasso with adaptive weights on ℓ_{1}-regularization

$$
\boldsymbol{\beta}_{\text {lasso }} \stackrel{\text { def. }}{=} \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda \sum_{j=1}^{p} w_{j}\left|\boldsymbol{\beta}_{j}\right|
$$

where $w_{j} \in[0,1)$.

Zou H. (2006), 'The adaptive lasso and its oracle properties', Journal of the American Statistical Association 101(476), 1418-1429.

Adaptive (weighted) Lasso

$$
\boldsymbol{\beta}_{\text {lasso }} \stackrel{\text { def. }}{=} \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|^{2}+\lambda\|\boldsymbol{\beta}\|_{1}
$$

- Only one λ that dictates sparsity degree of all $\boldsymbol{\beta}_{j}$
- What if we want a scheme that is adaptive: coefficients with large magnitude (absolute value) receive smaller sparse penalty?
\longrightarrow Lasso with adaptive weights on ℓ_{1}-regularization

$$
\boldsymbol{\beta}_{\text {lasso }} \stackrel{\text { def. }}{=} \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|^{2}+\lambda \sum_{j=1}^{p} w_{j}\left|\boldsymbol{\beta}_{j}\right|
$$

where $w_{j} \in[0,1)$.
\longrightarrow Optimization problem is still convex in $\boldsymbol{\beta}$

Zou H. (2006), 'The adaptive lasso and its oracle properties', Journal of the American Statistical Association 101(476), 1418-1429.

Adaptive (weighted) Lasso

$$
\boldsymbol{\beta}_{\text {lasso }} \stackrel{\text { def. }}{=} \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|^{2}+\lambda \sum_{j=1}^{p} w_{j}\left|\boldsymbol{\beta}_{j}\right|
$$

- Typically w_{j} are initialized as

$$
w_{j}=\left\{\begin{array}{l}
\frac{1}{\left|\beta_{j}^{\text {init }}\right|} \quad \text { if } \beta_{j}^{\text {init }} \neq 0 \\
0 \quad \text { if } \beta_{j}^{\text {init }}=0
\end{array}\right.
$$

Adaptive (weighted) Lasso

$$
\boldsymbol{\beta}_{\text {lasso }} \stackrel{\text { def. }}{=} \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda \sum_{j=1}^{p} w_{j}\left|\boldsymbol{\beta}_{j}\right|
$$

- Typically w_{j} are initialized as

$$
w_{j}=\left\{\begin{array}{l}
\frac{1}{\left|\beta_{j}^{\text {init }}\right|} \quad \text { if } \beta_{j}^{\text {init }} \neq 0 \\
0 \quad \text { if } \beta_{j}^{\text {init }}=0
\end{array}\right.
$$

- But what is this $\boldsymbol{\beta}^{\text {init }}$?

Adaptive (weighted) Lasso

$$
\boldsymbol{\beta}_{\text {lasso }} \stackrel{\text { def. }}{=} \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|^{2}+\lambda \sum_{j=1}^{p} w_{j}\left|\boldsymbol{\beta}_{j}\right|
$$

- Typically w_{j} are initialized as

$$
w_{j}=\left\{\begin{array}{l}
\frac{1}{\left|\beta_{j}^{\text {init }}\right|} \quad \text { if } \beta_{j}^{\text {init }} \neq 0 \\
0 \quad \text { if } \beta_{j}^{\text {init }}=0
\end{array}\right.
$$

- But what is this $\beta^{\text {init? }}$
- Just put a standard lasso for finding $\boldsymbol{\beta}^{\text {init }}$ (called screening operation)

Adaptive (weighted) Lasso

Fig. 2.4 Estimated regression coefficients in the linear model with $p=1000$ and $n=50$. Left: Lasso. Right: Adaptive Lasso with Lasso as initial estimator. The 3 true regression coefficients are indicated with triangles. Both methods used with tuning parameters selected from 10 -fold crossvalidation.

Bühlmann, P., \& Geer, S. A. van de. (2011). Statistics for high-dimensional data: Methods, theory and applications. Springer.

Adaptive (weighted) Lasso

$$
\boldsymbol{\beta}_{\text {lasso }} \stackrel{\text { def. }}{=} \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|^{2}+\lambda \sum_{j=1}^{p}\left|w_{j} \boldsymbol{\beta}_{j}\right|
$$

- Optimization problem is still convex in $\boldsymbol{\beta}$, but how to solve now that there is multiple value of λ possible?

Adaptive (weighted) Lasso

$$
\boldsymbol{\beta}_{\text {lasso }} \stackrel{\text { def. }}{=} \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda \sum_{j=1}^{p}\left|w_{j} \boldsymbol{\beta}_{j}\right|
$$

- Optimization problem is still convex in $\boldsymbol{\beta}$, but how to solve now that there is multiple value of λ possible?
- Question: can we reformulate the adaptive lasso back to the original lasso?

Adaptive (weighted) Lasso

$$
\boldsymbol{\beta}_{\text {lasso }} \stackrel{\text { def. }}{=} \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda \sum_{j=1}^{p}\left|w_{j} \boldsymbol{\beta}_{j}\right|
$$

- Optimization problem is still convex in $\boldsymbol{\beta}$, but how to solve now that there is multiple value of λ possible?
- Question: can we reformulate the adaptive lasso back to the original lasso?
- Hint: use the change of variable $\tilde{\boldsymbol{\beta}}$ as some form of w and $\boldsymbol{\beta}$
- To the whiteboard...

Adaptive (weighted) Lasso

$$
\tilde{\boldsymbol{\beta}}_{\text {lasso }} \stackrel{\text { def. }}{=} \underset{\tilde{\boldsymbol{\beta}}}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\tilde{\mathrm{X}} \tilde{\boldsymbol{\beta}}\|^{2}+\lambda|\tilde{\boldsymbol{\beta}}|_{1}
$$

and this means

$$
\tilde{\boldsymbol{\beta}}_{\text {lasso }}=\mathrm{W}^{-1} \boldsymbol{\beta}_{\text {lasso }}
$$

i.e. the solution of the adaptive Lasso is just a rescaling of the solution of original Lasso
\longrightarrow enjoys theoretical guarantee (consistency, asymptotic normality) from the Lasso without additional assumptions

Adaptive (weighted) Lasso

In sklearn.linear_model.Lasso

```
fit(X,y,sample_weight=None, check_input=True)
Fit model with coordinate descent.
Parameters: \(\quad \mathrm{X}:\{n d a r r a y\), sparse matrix\} of (n_samples, \(n\) _features) Data.
y : {ndarray, sparse matrix} of shape (n_samples,) or (n_samples, n_targets)
    Target. Will be cast to X's dtype if necessary.
    sample_weight : float or array-like of shape (n_samples,), default=None
    Sample weights. Internally, the sample_weight vector will be rescaled to sum to n_samples.
    New in version 0.23.
    check_input : bool, default=True
```

[source]
Allow to bypass several input checking. Don't use this parameter unless you know what you do.
https://scikit-learn.org/stable/modules/generated/sklearn.linear_ model.Lasso.html

A cousin of Lasso: Elastic-Net

- A problem with Lasso: when there are high-correlations between variables, e.g. $\mathrm{X}_{*, i}$ and $\mathrm{X}_{*, j}$ empirically Lasso select one but not both...
- At most n variables will be selected by the lasso, so problematic when $n \ll p$
- A solution: adding ℓ_{2} norm to the lasso optimization problem: elastic net

Zou, Hui; Hastie, Trevor (2005). "Regularization and Variable Selection via the Elastic Net". Journal of the Royal Statistical Society, Series B. 67 (2): 301-320.

A cousin of Lasso: Elastic-Net

- A problem with Lasso: when there are high-correlations between variables, e.g. $\mathrm{X}_{*, i}$ and $\mathrm{X}_{*, j}$ empirically Lasso select one but not both...
- At most n variables will be selected by the lasso, so problematic when $n \ll p$
- A solution: adding ℓ_{2} norm to the lasso optimization problem: elastic net

Zou, Hui; Hastie, Trevor (2005). "Regularization and Variable Selection via the Elastic Net". Journal of the Royal Statistical Society, Series B. 67 (2): 301-320.

Elastic-Net

Elastic-Net

but now we have two hyper-parameters λ_{1} and λ_{2} ?

Elastic-Net

we can just set $\theta=\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} \in[0,1]$, then the equivalent problem is

$$
\boldsymbol{\beta}_{\text {enet }} \stackrel{\text { def. }}{=} \underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|^{2}+(1-\theta)\|\boldsymbol{\beta}\|_{1}+\frac{\theta}{2}\|\boldsymbol{\beta}\|_{2}^{2}
$$

\longrightarrow enet-path interpolates between Lasso and Ridge regression path

Image from Gabriel Peyré's twitter: https://twitter.com/gabrielpeyre/status/1318054267685621761

Elastic-Net

- Elastic-net solutions: interpolates between Lasso and Ridge regression solutions
- Question: this gives hint on finding the solution of Enet? (remember how we find solution for Lasso and for Ridge?)

Elastic-Net, in Orthogonal Design settings

$$
\boldsymbol{\beta}_{\text {enet }} \stackrel{\text { def. }}{=} \underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathbf{X} \boldsymbol{\beta}\|_{2}^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}+\frac{\lambda_{2}}{2}\|\boldsymbol{\beta}\|_{2}^{2}
$$

in the case $\frac{1}{n} \mathrm{X}^{\top} \mathrm{X}=\mathrm{Id}$, then $\hat{\boldsymbol{\beta}}^{L S}=1 / n\left(\mathrm{X}^{\top} \mathrm{X}\right)^{-1} \mathrm{X}^{\top} \mathrm{y}=\mathrm{X}^{\top} \mathrm{y} / n$ so for the first term:
$\underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|^{2}$

Elastic-Net, in Orthogonal Design settings

$$
\boldsymbol{\beta}_{\text {enet }} \stackrel{\text { def. }}{=} \underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathbf{X} \boldsymbol{\beta}\|_{2}^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}+\frac{\lambda_{2}}{2}\|\boldsymbol{\beta}\|_{2}^{2}
$$

in the case $\frac{1}{n} \mathrm{X}^{\top} \mathrm{X}=\mathrm{Id}$, then $\hat{\boldsymbol{\beta}}^{L S}=1 / n\left(\mathrm{X}^{\top} \mathrm{X}\right)^{-1} \mathrm{X}^{\top} \mathrm{y}=\mathrm{X}^{\top} \mathrm{y} / n$ so for the first term:

$$
\begin{aligned}
& \underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|^{2} \\
& =\underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\left\{\mathrm{y}^{\top} \mathrm{y}+\boldsymbol{\beta}^{\top} \boldsymbol{\beta}-2 \mathrm{y}^{\top} \mathrm{X} \boldsymbol{\beta}\right\}
\end{aligned}
$$

Elastic-Net, in Orthogonal Design settings

$$
\boldsymbol{\beta}_{\text {enet }} \stackrel{\text { def. }}{=} \underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathbf{X} \boldsymbol{\beta}\|_{2}^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}+\frac{\lambda_{2}}{2}\|\boldsymbol{\beta}\|_{2}^{2}
$$

in the case $\frac{1}{n} \mathrm{X}^{\top} \mathrm{X}=\mathrm{Id}$, then $\hat{\boldsymbol{\beta}}^{L S}=1 / n\left(\mathrm{X}^{\top} \mathrm{X}\right)^{-1} \mathrm{X}^{\top} \mathrm{y}=\mathrm{X}^{\top} \mathrm{y} / n$ so for the first term:

$$
\begin{aligned}
& \underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|^{2} \\
& =\underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\left\{\mathrm{y}^{\top} \mathrm{y}+\boldsymbol{\beta}^{\top} \boldsymbol{\beta}-2 \mathrm{y}^{\top} \mathbf{X} \boldsymbol{\beta}\right\} \\
& =\underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\left\{\mathrm{y}^{\top} \mathrm{y}+n \boldsymbol{\beta}^{\top} \boldsymbol{\beta}+2 n \boldsymbol{\beta}^{\top} \hat{\boldsymbol{\beta}}^{L S}+n\left(\hat{\boldsymbol{\beta}}^{L S}\right)^{\top} \hat{\boldsymbol{\beta}}^{L S}-n\left(\hat{\boldsymbol{\beta}}^{L S}\right)^{\top} \hat{\boldsymbol{\beta}}^{L S}\right\}
\end{aligned}
$$

Elastic-Net, in Orthogonal Design settings

$$
\boldsymbol{\beta}_{\text {enet }} \stackrel{\text { def. }}{=} \underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathbf{X} \boldsymbol{\beta}\|_{2}^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}+\frac{\lambda_{2}}{2}\|\boldsymbol{\beta}\|_{2}^{2}
$$

in the case $\frac{1}{n} \mathrm{X}^{\top} \mathrm{X}=\mathrm{Id}$, then $\hat{\boldsymbol{\beta}}^{L S}=1 / n\left(\mathrm{X}^{\top} \mathrm{X}\right)^{-1} \mathrm{X}^{\top} \mathrm{y}=\mathrm{X}^{\top} \mathrm{y} / n$ so for the first term:

$$
\begin{aligned}
& \underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2} \\
& =\underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\left\{\mathbf{y}^{\top} \mathbf{y}+\boldsymbol{\beta}^{\top} \boldsymbol{\beta}-2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\beta}\right\} \\
& =\underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\left\{\mathrm{y}^{\top} \mathbf{y}+n \boldsymbol{\beta}^{\top} \boldsymbol{\beta}+2 n \boldsymbol{\beta}^{\top} \hat{\boldsymbol{\beta}}^{L S}+n\left(\hat{\boldsymbol{\beta}}^{L S}\right)^{\top} \hat{\boldsymbol{\beta}}^{L S}-n\left(\hat{\boldsymbol{\beta}}^{L S}\right)^{\top} \hat{\boldsymbol{\beta}}^{L S}\right\} \\
& =\underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\left\{\left(\hat{\boldsymbol{\beta}}^{L S}-\boldsymbol{\beta}\right)^{\top}\left(n \hat{\boldsymbol{\beta}}^{L S}-\boldsymbol{\beta}\right)+\mathrm{y}^{\top}\left(\mathrm{Id}-\mathrm{X}^{\top} \mathbf{X}\right) \mathrm{y}\right\}
\end{aligned}
$$

Elastic-Net, in Orthogonal Design settings

$$
\boldsymbol{\beta}_{\text {enet }} \stackrel{\text { def. }}{=} \underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathbf{X} \boldsymbol{\beta}\|_{2}^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}+\frac{\lambda_{2}}{2}\|\boldsymbol{\beta}\|_{2}^{2}
$$

in the case $\frac{1}{n} \mathrm{X}^{\top} \mathrm{X}=\mathrm{Id}$, then $\hat{\boldsymbol{\beta}}^{L S}=1 / n\left(\mathrm{X}^{\top} \mathrm{X}\right)^{-1} \mathrm{X}^{\top} \mathrm{y}=\mathrm{X}^{\top} \mathrm{y} / n$ so for the first term:

$$
\begin{aligned}
& \underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|^{2} \\
& =\underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\left\{\mathrm{y}^{\top} \mathrm{y}+\boldsymbol{\beta}^{\top} \boldsymbol{\beta}-2 \mathrm{y}^{\top} \mathbf{X} \boldsymbol{\beta}\right\} \\
& =\underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\left\{\mathrm{y}^{\top} \mathrm{y}+n \boldsymbol{\beta}^{\top} \boldsymbol{\beta}+2 n \boldsymbol{\beta}^{\top} \hat{\boldsymbol{\beta}}^{L S}+n\left(\hat{\boldsymbol{\beta}}^{L S}\right)^{\top} \hat{\boldsymbol{\beta}}^{L S}-n\left(\hat{\boldsymbol{\beta}}^{L S}\right)^{\top} \hat{\boldsymbol{\beta}}^{L S}\right\} \\
& =\underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\left\{\left(\hat{\boldsymbol{\beta}}^{L S}-\boldsymbol{\beta}\right)^{\top}\left(n \hat{\boldsymbol{\beta}}^{L S}-\boldsymbol{\beta}\right)+\mathrm{y}^{\top}\left(\mathrm{Id}-\mathrm{X}^{\top} \mathrm{X}\right) \mathrm{y}\right\} \\
& =\underset{\beta}{\operatorname{argmin}} \frac{1}{2}\left\|\hat{\boldsymbol{\beta}}^{L S}-\boldsymbol{\beta}\right\|_{2}^{2}
\end{aligned}
$$

Elastic-Net, in Orthogonal Design settings

$$
\begin{gathered}
\boldsymbol{\beta}_{\text {enet }} \stackrel{\text { def. }}{=} \underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|_{2}^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}+\frac{\lambda_{2}}{2}\|\boldsymbol{\beta}\|_{2}^{2} \\
\text { in the case } \frac{1}{n} \mathrm{X}^{\top} \mathrm{X}=\mathrm{Id}
\end{gathered}
$$

Elastic-Net, in Orthogonal Design settings

$$
\begin{gathered}
\boldsymbol{\beta}_{\text {enet }} \stackrel{\text { def. }}{=} \underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|_{2}^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}+\frac{\lambda_{2}}{2}\|\boldsymbol{\beta}\|_{2}^{2} \\
\text { in the case } \frac{1}{n} \mathrm{X}^{\top} \mathrm{X}=\mathrm{Id}
\end{gathered}
$$

- This means

$$
\boldsymbol{\beta}_{\text {enet }}=\underset{\beta}{\operatorname{argmin}} \frac{1}{2} \sum_{j=1}^{p}\left(\hat{\beta}_{j}^{L S}-\beta_{j}\right)^{2}+\lambda_{1} \sum_{j=1}^{p}\left|\beta_{j}\right|+\frac{\lambda_{2}}{2} \sum_{j=1}^{p} \beta_{j}^{2}
$$

Elastic-Net, in Orthogonal Design settings

$$
\begin{gathered}
\boldsymbol{\beta}_{\text {enet }} \stackrel{\text { def. }}{=} \underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|_{2}^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}+\frac{\lambda_{2}}{2}\|\boldsymbol{\beta}\|_{2}^{2} \\
\text { in the case } \frac{1}{n} \mathrm{X}^{\top} \mathrm{X}=\mathrm{Id}
\end{gathered}
$$

- This means

$$
\boldsymbol{\beta}_{\text {enet }}=\underset{\beta}{\operatorname{argmin}} \frac{1}{2} \sum_{j=1}^{p}\left(\hat{\beta}_{j}^{L S}-\beta_{j}\right)^{2}+\lambda_{1} \sum_{j=1}^{p}\left|\beta_{j}\right|+\frac{\lambda_{2}}{2} \sum_{j=1}^{p} \beta_{j}^{2}
$$

- The problem is separable: for each j

$$
\beta_{j}^{\text {enet }}=\underset{\beta}{\operatorname{argmin}} \frac{1}{2}\left(\hat{\beta}_{j}^{L S}-\beta_{j}\right)^{2}+\lambda_{1}\left|\beta_{j}\right|+\frac{\lambda_{2}}{2} \beta_{j}^{2}
$$

Elastic-Net, in Orthogonal Design settings

$$
\begin{gathered}
\boldsymbol{\beta}_{\text {enet }} \stackrel{\text { def. }}{=} \underset{\beta}{\operatorname{argmin}} \frac{1}{2 n}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|_{2}^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}+\frac{\lambda_{2}}{2}\|\boldsymbol{\beta}\|_{2}^{2} \\
\text { in the case } \frac{1}{n} \mathrm{X}^{\top} \mathrm{X}=\mathrm{Id}
\end{gathered}
$$

- This means

$$
\boldsymbol{\beta}_{\text {enet }}=\underset{\beta}{\operatorname{argmin}} \frac{1}{2} \sum_{j=1}^{p}\left(\hat{\beta}_{j}^{L S}-\beta_{j}\right)^{2}+\lambda_{1} \sum_{j=1}^{p}\left|\beta_{j}\right|+\frac{\lambda_{2}}{2} \sum_{j=1}^{p} \beta_{j}^{2}
$$

- The problem is separable: for each j

$$
\begin{aligned}
\beta_{j}^{\text {enet }} & =\underset{\beta}{\operatorname{argmin}} \frac{1}{2}\left(\hat{\beta}_{j}^{L S}-\beta_{j}\right)^{2}+\lambda_{1}\left|\beta_{j}\right|+\frac{\lambda_{2}}{2} \beta_{j}^{2} \\
& =\underset{\beta}{\operatorname{argmin}} \frac{1}{2}\left(\beta_{j}-\frac{\hat{\beta}_{j}^{L S}}{1+\lambda_{2}}\right)^{2}+\frac{\lambda_{1}}{1+\lambda_{2}}\left|\beta_{j}\right| \\
& \stackrel{\text { def. }}{=} \operatorname{prox}_{\|\cdot\|_{1}}\left(\beta_{j}-\frac{\hat{\beta}_{j}^{L S}}{1+\lambda_{2}}, \frac{\lambda_{1}}{1+\lambda_{2}}\right)
\end{aligned}
$$

Elastic-Net

This means: in general settings, we can find solution of Enet with iterative optimization algorithm (from last session):

- ISTA, FISTA
- Coordinate descent (implemented in sklearn)

Other Variants

- Group lasso
- Lasso for data matrix with missing elements
- Debiased Lasso

Other Variants

- Group lasso
- Lasso for data matrix with missing elements
- Debiased Lasso
...which we will wait for presentations next week :-)

Reminder

Variants of Lasso

Hyperparameter Optimization

Previously...

Lasso: Least Absolute Shrinkage and Selection Operator

$$
\boldsymbol{\beta}_{\text {lasso }} \stackrel{\text { def. }}{=} \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2}\|\mathrm{y}-\mathrm{X} \boldsymbol{\beta}\|^{2}+\lambda\|\boldsymbol{\beta}\|_{1}
$$

where $\lambda>0$ controls the sparsity of the solution

- Choose λ based $\lambda_{\max }=\left\|\mathrm{X}^{\top} y\right\|_{\infty}$
- Reminder: when $\lambda>\lambda_{\max }$ all β_{j} will shrink to zero
- But λ to select? - cross-validation/Information Criterion

Hyperparameter selection, the popular way

- Cross validation
- Criterion (AIC/BIC) that control model complexity

Hyperparameter selection, the popular way

- Cross validation
- Criterion (AIC/BIC) that control model complexity
- Formalization: for Lasso

$$
\hat{\boldsymbol{\beta}}^{(\lambda)} \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}} \frac{1}{2 n}\left\|\mathrm{y}^{\text {train }}-\mathrm{X}^{\text {train }} \boldsymbol{\beta}\right\|^{2}+\lambda\|\boldsymbol{\beta}\|_{1}
$$

- Subject to:

$$
\mathcal{L}(\lambda)=\min _{\lambda}\left\|\mathrm{y}^{\mathrm{val}}-\mathrm{X}^{\mathrm{val}} \hat{\boldsymbol{\beta}}^{(\lambda)}\right\|^{2}
$$

Hyperparameter selection, the popular way

- Cross validation
- Criterion (AIC/BIC) that control model complexity
- Formalization: for Lasso

$$
\hat{\boldsymbol{\beta}}^{(\lambda)} \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}} \frac{1}{2 n}\left\|\mathrm{y}^{\text {train }}-\mathrm{X}^{\text {train }} \boldsymbol{\beta}\right\|^{2}+\lambda\|\boldsymbol{\beta}\|_{1}
$$

- Subject to:

$$
\mathcal{L}(\lambda)=\min _{\lambda}\left\|\mathrm{y}^{\mathrm{val}}-\mathrm{X}^{\mathrm{val}} \hat{\boldsymbol{\beta}}^{(\lambda)}\right\|^{2}
$$

\longrightarrow Today: hyper-parameter selection with bi-level optimization

Hyperparameter Selection: Bilevel Optimization?

$$
\mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=\underbrace{\min _{\lambda}\left\|\mathrm{y}^{\mathrm{val}}-\mathrm{X}^{\mathrm{val}} \hat{\boldsymbol{\beta}}^{(\lambda)}\right\|^{2}}_{\text {outer optimization problem }} \text { s.t. } \underbrace{\hat{\boldsymbol{\beta}}^{(\lambda)} \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}} h(\boldsymbol{\beta}, \lambda)}_{\text {inner optimization problem }}
$$

Caveat: for the moment we deviate from Lasso, and assume the case h is at least twice-differentiable

Grid-search as a zero-order optimization method

$$
\mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=\underbrace{\min \left\|y^{\text {val }}-X^{\text {val }} \hat{\boldsymbol{\beta}}^{(\lambda)}\right\|^{2}}_{\text {outer optimization problem }} \text { s.t. } \underbrace{\hat{\boldsymbol{\beta}}^{(\lambda)} \in \underset{\beta \in \mathbb{R} p}{\operatorname{argmin}} h(\boldsymbol{\beta}, \lambda)}_{\text {inner optimization problem }}
$$

Grid-search with cross-validation (assume 1-fold CV):

- Defines a range of values for λ
- For each λ, solves the inner problem, then calculate the outer loss
- Choose $\lambda \in \operatorname{grid}(\lambda)$ that that minimizes the outer loss

Grid-search as a zero-order optimization method

Grid-search with cross-validation (assume 1-fold CV):

- Defines a range of values for λ
- For each λ, solves the inner problem, then calculate the outer loss
- Choose $\lambda \in \operatorname{grid}(\lambda)$ that that minimizes the outer loss

Example from: https://qb3.github.io/sparse-ho/index.html

First-order hyperparameter-optimization?

$$
\mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=\underbrace{\min _{\lambda}\left\|\mathrm{y}^{\text {val }}-\mathrm{X}^{\text {val }} \hat{\boldsymbol{\beta}}^{(\lambda)}\right\|^{2}}_{\text {outer optimization problem }} \text { s.t. } \underbrace{\hat{\boldsymbol{\beta}}^{(\lambda)} \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}} h(\boldsymbol{\beta}, \lambda)}_{\text {inner optimization problem }}
$$

- Idea: gradient descent?

$$
\lambda^{(t+1)}=\lambda^{(t)}-\eta \nabla \mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda^{(t)}\right)
$$

First-order hyperparameter-optimization?

$$
\mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=\underbrace{\min _{\lambda}\left\|\mathrm{y}^{\text {val }}-\mathrm{X}^{\text {val }} \hat{\boldsymbol{\beta}}^{(\lambda)}\right\|^{2}}_{\text {outer optimization problem }} \text { s.t. } \underbrace{\hat{\boldsymbol{\beta}}^{(\lambda)} \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}} h(\boldsymbol{\beta}, \lambda)}_{\text {inner optimization problem }}
$$

- Idea: gradient descent?

$$
\lambda^{(t+1)}=\lambda^{(t)}-\eta \nabla \mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda^{(t)}\right)
$$

First-order hyperparameter-optimization

$$
\mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=\underbrace{\min _{\lambda}\left\|\mathrm{y}^{\text {val }}-\mathrm{X}^{\mathrm{val}} \hat{\boldsymbol{\beta}}^{(\lambda)}\right\|^{2}}_{\text {outer optimization problem }} \text { s.t. } \underbrace{\hat{\boldsymbol{\beta}}^{(\lambda)} \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}} h(\boldsymbol{\beta}, \lambda)}_{\text {inner optimization problem }}
$$

- Previous calculus classes tell us that

$$
\nabla \mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=\partial_{\lambda} \hat{\boldsymbol{\beta}}^{(\lambda) \top} \nabla_{1} \mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)+\nabla_{2} \mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)
$$

First-order hyperparameter-optimization

$$
\mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=\underbrace{\min _{\lambda}\left\|\mathrm{y}^{\text {val }}-\mathrm{X}^{\mathrm{val}} \hat{\boldsymbol{\beta}}^{(\lambda)}\right\|^{2}}_{\text {outer optimization problem }} \text { s.t. } \underbrace{\hat{\boldsymbol{\beta}}^{(\lambda)} \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}} h(\boldsymbol{\beta}, \lambda)}_{\text {inner optimization problem }}
$$

- Previous calculus classes tell us that

$$
\nabla \mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=\partial_{\lambda} \hat{\boldsymbol{\beta}}^{(\lambda) \top} \nabla_{1} \mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)+\nabla_{2} \mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)
$$

- Question: what is problematic in computation of this gradient?

First-order hyperparameter-optimization

$$
\mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=\underbrace{\min _{\lambda}\left\|\mathrm{y}^{\text {val }}-\mathrm{X}^{\mathrm{val}} \hat{\boldsymbol{\beta}}^{(\lambda)}\right\|^{2}}_{\text {outer optimization problem }} \text { s.t. } \underbrace{\hat{\boldsymbol{\beta}}^{(\lambda)} \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}} h(\boldsymbol{\beta}, \lambda)}_{\text {inner optimization problem }}
$$

- Previous calculus classes tell us that

$$
\nabla \mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=\partial_{\lambda} \hat{\boldsymbol{\beta}}^{(\lambda) \top} \nabla_{1} \mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)+\nabla_{2} \mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)
$$

- Question: what is problematic in computation of this gradient?
- $\hat{\boldsymbol{\beta}}^{(\lambda)}$ is the solution of another optimization problem...

Implicit Function Theorem to the rescue

Remember the inner problem:

$$
\hat{\boldsymbol{\beta}}^{(\lambda)} \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}} h(\boldsymbol{\beta}, \lambda)
$$

Implicit Function Theorem to the rescue

Remember the inner problem:

$$
\hat{\boldsymbol{\beta}}^{(\lambda)} \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}} h(\boldsymbol{\beta}, \lambda)
$$

$-\hat{\boldsymbol{\beta}}^{(\lambda)}$ is an implicit function of λ, characterized by

$$
\nabla_{1} h\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=0
$$

Implicit Function Theorem to the rescue

Remember the inner problem:

$$
\hat{\boldsymbol{\beta}}^{(\lambda)} \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}} h(\boldsymbol{\beta}, \lambda)
$$

- $\hat{\boldsymbol{\beta}}^{(\lambda)}$ is an implicit function of λ, characterized by

$$
\nabla_{1} h\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=0
$$

- Implicit Function Theorem: if \mathcal{L} and h are continuously differentiable, then there exists a unique $\hat{\boldsymbol{\beta}}^{(\lambda)}$, and we have

$$
\begin{aligned}
\partial_{\lambda} \hat{\boldsymbol{\beta}}^{(\lambda)} & =-\left[\nabla_{1}^{2} h\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)\right]^{-1} \nabla_{1,2}^{2} h\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right) \\
& =-\left[H_{\beta, h}\right]^{-1} \nabla_{1,2}^{2} h\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)
\end{aligned}
$$

Implicit Function Theorem to the rescue

Remember the inner problem:

$$
\hat{\boldsymbol{\beta}}^{(\lambda)} \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}} h(\boldsymbol{\beta}, \lambda)
$$

- $\hat{\boldsymbol{\beta}}^{(\lambda)}$ is an implicit function of λ, characterized by

$$
\nabla_{1} h\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=0
$$

- Implicit Function Theorem: if \mathcal{L} and h are continuously differentiable, then there exists a unique $\hat{\boldsymbol{\beta}}^{(\lambda)}$, and we have

$$
\begin{aligned}
\partial_{\lambda} \hat{\boldsymbol{\beta}}^{(\lambda)} & =-\left[\nabla_{1}^{2} h\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)\right]^{-1} \nabla_{1,2}^{2} h\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right) \\
& =-\left[H_{\beta, h}\right]^{-1} \nabla_{1,2}^{2} h\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)
\end{aligned}
$$

- Question: where does this equation come from?

First-order hyperparameter-optimization

$$
\mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=\underbrace{\min _{\lambda}\left\|\mathrm{y}^{\mathrm{val}}-\mathrm{X}^{\mathrm{val}} \hat{\boldsymbol{\beta}}^{(\lambda)}\right\|^{2}}_{\text {outer optimization problem }} \text { s.t. } \underbrace{\hat{\boldsymbol{\beta}}^{(\lambda)} \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}} h(\boldsymbol{\beta}, \lambda)}_{\text {inner optimization problem }}
$$

- So:

$$
\begin{aligned}
\nabla \mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right) & =\partial_{\lambda} \hat{\boldsymbol{\beta}}^{(\lambda) \top} \nabla_{1} \mathcal{L}+\nabla_{2} \mathcal{L} \\
& =-\left[\nabla_{1,2}^{2} h\right]^{\top}\left[H_{\beta, h}\right]^{-1} \nabla_{1} \mathcal{L}+\nabla_{2} \mathcal{L}
\end{aligned}
$$

Y. Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):1889-1900, 2000.

First-order hyperparameter-optimization

$$
\mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=\underbrace{\min _{\lambda}\left\|\mathrm{y}^{\mathrm{val}}-\mathrm{X}^{\mathrm{val}} \hat{\boldsymbol{\beta}}^{(\lambda)}\right\|^{2}}_{\text {outer optimization problem }} \text { s.t. } \underbrace{\hat{\boldsymbol{\beta}}^{(\lambda)} \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}} h(\boldsymbol{\beta}, \lambda)}_{\text {inner optimization problem }}
$$

- So:

$$
\begin{aligned}
\nabla \mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right) & =\partial_{\lambda} \hat{\boldsymbol{\beta}}^{(\lambda) \top} \nabla_{1} \mathcal{L}+\nabla_{2} \mathcal{L} \\
& =-\left[\nabla_{1,2}^{2} h\right]^{\top}\left[H_{\beta, h}\right]^{-1} \nabla_{1} \mathcal{L}+\nabla_{2} \mathcal{L}
\end{aligned}
$$

- But: any problem remains?
Y. Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):1889-1900, 2000.

First-order hyperparameter-optimization

$$
\mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=\underbrace{\min _{\lambda}\left\|\mathrm{y}^{\mathrm{val}}-\mathrm{X}^{\mathrm{val}} \hat{\boldsymbol{\beta}}^{(\lambda)}\right\|^{2}}_{\text {outer optimization problem }} \text { s.t. } \underbrace{\hat{\boldsymbol{\beta}}^{(\lambda)} \in \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}} h(\boldsymbol{\beta}, \lambda)}_{\text {inner optimization problem }}
$$

- So:

$$
\begin{aligned}
\nabla \mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right) & =\partial_{\lambda} \hat{\boldsymbol{\beta}}^{(\lambda) \top} \nabla_{1} \mathcal{L}+\nabla_{2} \mathcal{L} \\
& =-\left[\nabla_{1,2}^{2} h\right]^{\top}\left[H_{\beta, h}\right]^{-1} \nabla_{1} \mathcal{L}+\nabla_{2} \mathcal{L}
\end{aligned}
$$

- But: any problem remains?
- Inverting Hessian is generally very costly, and not possible when $n<p$...
Y. Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):1889-1900, 2000.

First-order hyperparameter-optimization

$$
\nabla \mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)=-\left[\nabla_{1,2}^{2} h\right]^{\top}\left[H_{\beta, h}\right]^{-1} \nabla_{1} \mathcal{L}+\nabla_{2} \mathcal{L}
$$

Pedregosa (2016): at iteration k we have a tolerance ϵ_{k} small enough 1. With λ_{k}, solve the inner optimization problem, obtain $\hat{\boldsymbol{\beta}}^{\lambda_{k}}$
2. Approximate $\left[H_{\beta, h}\right]^{-1} \nabla_{1} \mathcal{L}$ by solving for q_{k} s.t

$$
\left\|H_{\hat{\boldsymbol{\beta}}^{\lambda_{k}, h}} q_{k}-\nabla_{1} \mathcal{L}\right\| \leq \epsilon_{k}
$$

3. Approximate $\nabla \mathcal{L}\left(\hat{\boldsymbol{\beta}}^{(\lambda)}, \lambda\right)$ with

$$
p_{k}=-\left[\nabla_{1,2}^{2} h\right]^{\top} q_{k}+\nabla_{2} \mathcal{L}\left(\hat{\beta}^{\lambda_{k}}, \lambda_{k}\right)
$$

4. Update $\lambda_{k+1}=\operatorname{ProjGD}\left(\lambda_{k}, p_{k}, \eta\right)$
\longrightarrow no inversion of the Hessian
Pedregosa, F. (2016). Hyperparameter optmimization with approximate gradient. In International conference on machine learning (pp. 737-746). PMLR.

First-order hyperparameter-optimization

First-order hyperparameter-optimization

First-order hyperparameter-optimization

- Still: we requires h to be smooth
- But what about the case for Lasso?

$$
h(\boldsymbol{\beta}, \lambda)=\frac{1}{2}\|\mathrm{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda\|\boldsymbol{\beta}\|_{1}
$$

First-order hyperparameter-optimization

\longrightarrow Check the work of Bertrand et al. (2020)

- Also leverage the sparsity induced by the Lasso for the computation
- Faster than implicit forward differentiation methods

Bertrand, Q., Klopfenstein, Q., et al. (2020). Implicit differentiation of Lasso-type models for hyperparameter optimization. Proceedings of the 37 th International Conference on Machine Learning

