Sparsity in Learning with the LASSO 2

Binh Nguyen — Telecom Paris

M2DS Alternants Research Seminar Course; 14/04/2022



Outline

Reminder

Variants of Lasso

Hyperparameter Optimization



Outline

Reminder



Previously...
Lasso: Least Absolute Shrinkage and Selection Operator

Log Lambda

def. L1
/Blasso ; argmlnz—”y—X,@Hz-i-)\H,BHl
J¢] n

where A > 0 controls the sparsity of the solution

— Promote sparsity: there is a threshold \,,,; such that A > A\jq
implies 6lasso =0
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Adaptive (weighted) Lasso

def. o1
Blasso = argm1n7||y_X6I|Z+A||ﬁ“1
J<] n

» Only one A that dictates sparsity degree of all 3;

» What if we want a scheme that is adaptive: coefficients with large
magnitude (absolute value) receive smaller sparse penalty?

Zou H. (2006), ‘The adaptive lasso and its oracle properties’, Journal of the
American Statistical Association 101(476), 1418-1429.
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» Only one A that dictates sparsity degree of all 3;

» What if we want a scheme that is adaptive: coefficients with large
magnitude (absolute value) receive smaller sparse penalty?

— Lasso with adaptive weights on ¢;-regularization
def 1 P
er. .
ﬂlasso = arggmn%\\y—XﬂHz J'_)‘;wj‘/@]'

where w; € [0,1).
— Optimization problem is still convex in 3

Zou H. (2006), ‘The adaptive lasso and its oracle properties’, Journal of the
American Statistical Association 101(476), 1418-1429.



Adaptive (weighted) Lasso
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» But what is this 3it?



Adaptive (weighted) Lasso

p
def. o1
ﬁlasso ; arg;nln%Hy—Xﬁ||2 +)\ij|/81|

j=1
> Typically w; are initialized as
1 .
— if B;mt 75 0
wy; = ‘BJ ‘
0 gt =0

» But what is this 3it?

» Just put a standard lasso for finding 3'®i* (called screening operation)



Adaptive (weighted) Lasso
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Fig. 2.4 Estimated regression coefficients in the linear model with p = 1000 and n = 50. Left:
Lasso. Right: Adaptive Lasso with Lasso as initial estimator. The 3 true regression coefficients are
indicated with triangles. Both methods used with tuning parameters selected from 10-fold cross-
validation.

Biihlmann, P., & Geer, S. A. van de. (2011). Statistics for high-dimensional
data: Methods, theory and applications. Springer.
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» Optimization problem is still convex in 3, but how to solve now that
there is multiple value of \ possible?
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Adaptive (weighted) Lasso

p
def. .1
IBZGSSO ; arg;nlnzn||yxﬁ|2+/\;|w]ﬁ]|

» Optimization problem is still convex in 3, but how to solve now that
there is multiple value of \ possible?

» Question: can we reformulate the adaptive lasso back to the original
lasso?

» Hint: use the change of variable ,@ as some form of w and 3
» To the whiteboard...



Adaptive (weighted) Lasso

~ def. o1 S A 5
ﬁlasso = a’rgmlnT”y_Xﬁ”Q +>\|5|1
,é n

and this means
2 vw-fl
lglusso = ﬁlasso

2.e. the solution of the adaptive Lasso is just a rescaling of the
solution of original Lasso

— enjoys theoretical guarantee (consistency, asymptotic normality)
from the Lasso without additional assumptions
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Adaptive (weighted) Lasso

In sklearn.linear_model.Lasso

fit(X, y, sample_weight=None, check_input=True) [source]

Fit model with coordinate descent.

Parameters: X : {ndarray, sparse matrix} of (n_samples, n_features)
Data.

y : {ndarray, sparse matrix} of shape (n_samples,) or (n_samples, n_targets)
Target. Will be cast to X’s dtype if necessary.

sample_weight : float or array-like of shape (n_samples,), default=None
Sample weights. Internally, the sample_weight vector will be rescaled to sum to n_samples.

New in version 0.23.

check_input : bool, default=True
Allow to bypass several input checking. Don’t use this parameter unless you know what you do.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_
model.Lasso.html
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A cousin of Lasso: Elastic-Net

» A problem with Lasso: when there are high-correlations between
variables, e.g. X, ; and X, ; empirically Lasso select one but not
both...

> At most n variables will be selected by the lasso, so problematic when
ng<p

» A solution: adding /> norm to the lasso optimization problem: elastic
net

Zou, Hui; Hastie, Trevor (2005). "Regularization and Variable Selection via
the Elastic Net". Journal of the Royal Statistical Society, Series B. 67 (2):
301-320.
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Elastic-Net

Elastic Net

\xz{// -

def.
ﬁenet =

Lasso

1 . A2
Efmgmwy—XMF+ANMh+—%W@
n B 2
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Elastic-Net

Elastic Net

/ Ridge

Lasso

ef.

def. 1 . A2
Benet = 5 argmin|ly — X817 + MlIBl: + S 11813
n B 2

but now we have two hyper-parameters \; and A\;?

13



Elastic-Net

== L |
Lasso 6 =0 A Ellastic net 60=1/2 Ridge #=1
A
we can just set 6 = 2 ¢ [0, 1], then the equivalent problem is
A1+ Ag

def. .1 0
Benet = argmin oyl X812+ 1 =08l + 185
B n 2

— enet-path interpolates between Lasso and Ridge regression path

Image from Gabriel Peyré’s twitter:
https://twitter.com/gabrielpeyre/status/1318054267685621761
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Elastic-Net

77 """"""" e

A Ellastic net

=12

Ridge 6=1

» Elastic-net solutions: interpolates between Lasso and Ridge regression

solutions

» Question: this gives hint on finding the solution of Enet? (remember

how we find solution for Lasso and for Ridge?)

15



Elastic-Net, in Orthogonal Design settings
e, .1 A
Benet = axgmin 7y = XBI + X181 + 31813

1 .
in the case ;XTX =1d, then B%° = 1/n(XTX)"1XTy =XTy/n
so for the first term:

o1
argmin ||y — X4
B n
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in the case ;XTX =1d, then B%° = 1/n(XTX)"1XTy =XTy/n
so for the first term:

o1
argmin -1y — X3
B n
. 1
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Elastic-Net, in Orthogonal Design settings
e, .1 A
Benet = axgmin 7y = XBI + X181 + 31813

1 .
in the case ;XTX =1d, then B%° = 1/n(XTX)"1XTy =XTy/n
so for the first term:

o1
argmin |y — X
B n
o1 T T T
= = —2y'X
argmin {v'vy+8B'8-2y'X3}
.1 - - . . -
_ arg;nm — {yTy+ nBTﬁ+2nIBTBLS n n(ﬁLS)TﬁLS B n(ﬁLS)TﬁLS}

—wym—{w“ AT (nB™ — B) +yT(1d - X"X)y |
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. 1
= argénm o {yTy +8'8 - 2yTXﬂ}

— argmin 2i {yTy n nBTﬁ i 2nIBTBLS n n(BLS)TBLS B n(BLS)TBLS}
Jé; n

. 1 N .
= argmin - {(5% —9) (5™ — 9) +y7 (14 - XTX)y}

R P
= argmin 214 — B3
B
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Elastic-Net, in Orthogonal Design settings

def. 1 A2
Benet = argmin oyl M X8B3+ MBI+ S 1815
Jé; n 2

1
in the case —XTX =1d
n

» This means
12 . P Ay P
/Benet = arg;nin 5 Z(ﬁ][ls - Bj)2 + )\1 Z'ﬂ]' + ? 26]2
j=1 j=1 j=1

» The problem is separable: for each j

. 1, . S >\2
Ha argémn 5( 75— i) + M| + ?BJZ
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Elastic-Net, in Orthogonal Design settings

def. 1 A2
Benet = argmin oyl M X8B3+ MBI+ S 1815
Jé; n 2

1
in the case —XTX =1d
n

» This means
12 . P Ay &
/Benet = arg;nin 5 Z(ﬁ][ls - Bj)2 + )\1 Z'ﬂ]' + ? Zﬁf
j=1 j=1 j=1
» The problem is separable: for each j
1 A
et = axgmin 5 (B — 8)° + Ml + Z 6

BLS 2
_argénln <BJ 1+)\2> 1+)\ 1551

def. g — 5LS A1
= PO T T TR
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Elastic-Net

This means: in general settings, we can find solution of Enet with
iterative optimization algorithm (from last session):

> ISTA, FISTA

» Coordinate descent (implemented in sklearn)

18



Other Variants

» Group lasso
» Lasso for data matrix with missing elements
» Debiased Lasso
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Other Variants

» Group lasso
» Lasso for data matrix with missing elements
» Debiased Lasso

...which we will wait for presentations next week :-)
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Hyperparameter Optimization
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Previously...
Lasso: Least Absolute Shrinkage and Selection Operator

def. 1
ﬂlasso ; arg;nlnEHy—XﬂH2+)\Hﬂ||1

where A > 0 controls the sparsity of the solution

» Choose \ based Apmaz = [| X" yl|oo
» Reminder: when A > Ao all 8; will shrink to zero

> But A to select? — cross-validation/Information Criterion

21



Hyperparameter selection, the popular way

» Cross validation
» Criterion (AIC/BIC) that control model complexity
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Hyperparameter selection, the popular way

» Cross validation
» Criterion (AIC/BIC) that control model complexity

» Formalization: for Lasso

R 1 i i
,BO\) c argmin 7||ytram o XtramBH2 + /\”,6”1
Bere 21

» Subject to:
E()\) — m)%n”yval _ Xvalla()\)”z
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Hyperparameter selection, the popular way

» Cross validation
» Criterion (AIC/BIC) that control model complexity

» Formalization: for Lasso

R 1 i i
IB()\) c aI,gInini”ytmm o XtramBHZ + /\”,6”1
Bere 21

» Subject to:
E()\) — m)%n”yval _ Xvalﬁ()\)Hz

— Today: hyper-parameter selection with bi-level optimization
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Hyperparameter Selection: Bilevel Optimization?

LBN,A) = min|ly™ —XBN |2 st. BN € argmin h(8, )
A BERP

outer optimization problem inner optimization problem

Caveat: for the moment we deviate from Lasso, and assume the case
h is at least twice-differentiable

23



Grid-search as a zero-order optimization method

L(BY,N) = minlly™ — X2BN |12 st. BN € argmin h(8,))
A BER?

outer optimization problem inner optimization problem

Grid-search with cross-validation (assume 1-fold CV):
» Defines a range of values for A
» For each ), solves the inner problem, then calculate the outer loss

» Choose A € grid(\) that that minimizes the outer loss

24



Grid-search as a zero-order optimization method

300008 @ 0O-th order method (grid search)
25000 %
20000«

15000 o

Iy - y*Ii3

10000 o

5000 o

Grid-search with cross-validation (assume 1-fold CV):
» Defines a range of values for A
» For each ), solves the inner problem, then calculate the outer loss

» Choose A € grid(\) that that minimizes the outer loss

Example from: https://qb3.github.io/sparse-ho/index.html
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First-order hyperparameter-optimization?

L(BN,N) = 1r1r1/\in|\y"'3‘l —X"3MN)2 5t BN € argmin h(B, \)
BERP

outer optimization problem inner optimization problem

> Idea: gradient descent?

AEHD = \O _ w280, AH)
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First-order hyperparameter-optimization

L(BN,N) = m/\inHyv""l —X7BN|2 st Y € argmin h(B, \)
BERP

outer optimization problem inner optimization problem

» Previous calculus classes tell us that

VLBY,N) =B8N TVLLBN,N) + VoL (BN, N)
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First-order hyperparameter-optimization

L(BN,N) = m/\inHyVal —X3WN |2 st. BN € argmin h(B, \)
BERP

outer optimization problem inner optimization problem

» Previous calculus classes tell us that

VLBY,N) =B8N TVLLBN,N) + VoL (BN, N)

» Question: what is problematic in computation of this gradient?

» 3™ is the solution of another optimization problem...
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Implicit Function Theorem to the rescue
Remember the inner problem:

BYN € argmin h(8, \)
BER?
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Implicit Function Theorem to the rescue
Remember the inner problem:

BYN € argmin h(8, \)
BER?

> BO‘) is an implicit function of A, characterized by

Vih(BY, N =0

» Implicit Function Theorem: if £ and h are continuously

differentiable, then there exists a unique BW, and we have

B = —[VIR(BN,N)]71VI LA (BN, N)
= —[Hpp] ™t V2,R(BY, )

> Question: where does this equation come from?
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First-order hyperparameter-optimization

LBN,A) = min|ly™ —XBN |2 st. BN € argmin h(8, )
A BER?

outer optimization problem inner optimization problem

» So:

VL(BN,N) = BN TVLL + VoL
*[ViQh]T[Hﬁ,her1£ + VoL

Y. Bengio. Gradient-based optimization of hyperparameters. Neural
computation, 12(8):1889-1900, 2000.

29



First-order hyperparameter-optimization

LBN,A) = min|ly™ —XBN |2 st. BN € argmin h(8, )
A BER?

outer optimization problem inner optimization problem

» So:

VL(BN,N) = BN TVLL + VoL
*[ViQh]T[Hﬁ,her1£ + VoL

» But: any problem remains?

Y. Bengio. Gradient-based optimization of hyperparameters. Neural
computation, 12(8):1889-1900, 2000.

29



First-order hyperparameter-optimization

LBN,A) = min|ly™ —XBN |2 st. BN € argmin h(8, )
A BER?

outer optimization problem inner optimization problem

» So:

VL(BN,N) = BN TVLL + VoL
*[ViQh]T[Hﬁ,her1£ + VoL

» But: any problem remains?

> Inverting Hessian is generally very costly, and not possible when
n < p...

Y. Bengio. Gradient-based optimization of hyperparameters. Neural
computation, 12(8):1889-1900, 2000.
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First-order hyperparameter-optimization

V,C(BO‘), /\) = 7[V%72h]T[Hﬁ,h]71V1E + VQﬁ

Pedregosa (2016): at iteration k we have a tolerance ¢; small enough
1. With \g, solve the inner optimization problem, obtain B’\k

2. Approximate [Hg »]| 'V L by solving for g s.t
[Hgne n@k — VL] < €k
3. Approximate VL(3™), \) with
P = —[Vioh] T gk + V2L(BY, Ar)

4. Update A\g41 = ProjGD(Ak, Pk, n)

— no inversion of the Hessian

Pedregosa, F. (2016). Hyperparameter optmimization with approximate
gradient. In International conference on machine learning (pp. 737-746). PMLR.
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First-order hyperparameter-optimization

o~

Iy = y*'I3

30000%
250008
200008
15000 o
10000«

50008

® 0-th order method (grid search)
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First-order hyperparameter-optimization

300008 @ O-th order method (grid search) r
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First-order hyperparameter-optimization

300008 @ O-th order method (grid search) r
1-st order method

25000 «
:u=” 20000 «
g
>
| 150004
2

100004

50004 .—’_*“‘—.—“//
103 1072 107t 10°

» Still: we requires h to be smooth

» But what about the case for Lasso?

BB = 3lly ~ XBI” + Nl
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First-order hyperparameter-optimization

300008 @ 0O-th order method (grid search) /ﬂj
1-st order method
25000 %
== 20000 8
S
>
| 15000
>
=2 )
10000 8 /
50004 - /
—_—— §:~_.—_;u/
1073 1072 107! 10°

AlAmax

— Check the work of Bertrand et al. (2020)
> Also leverage the sparsity induced by the Lasso for the computation

» Faster than implicit forward differentiation methods

Bertrand, Q., Klopfenstein, Q., et al. (2020). Implicit differentiation of
Lasso-type models for hyperparameter optimization. Proceedings of the 37th
International Conference on Machine Learning

32



	Reminder
	Variants of Lasso
	Hyperparameter Optimization

