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Previously...

Monge optimal transport (1781)

MOT(α, β)
def.
= min

T :T#α=β

∫
d(x ,T (x ))α(dx )

But:
▶ Not guarantee there exists a solution T
▶ Not guarantee uniqueness of the solution T
▶ Not symmetric: MOT(α, β) ̸= MOT(β, α)
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Previously...

Kantorovic optimal transport (1942)

OT(α, β)
def.
= min

π:π1=α,π2=β

∫ ∫
C (x , y)dπ(x , y)

But:
▶ Guarantee there exists a solution π (with some assumptions on C )
▶ Solution still not unique
▶ Symmetric
▶ Not differentiable
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Previously...

Kantorovic optimal transport – discrete formulation
(discrete measure → discrete measure)

α =

n∑
i=1

αiδxi β =

m∑
j=1

βj δyj

OT(α, β)
def.
= min

P:P1=α,P⊤1=β

∑
i,j

CijPij with Cij = d(xi , yj )

▶ Easiest to understand
▶ C and P now are just two matrices in Rn×m

▶ Solved with linear programming techniques, e.g. simplex algo.
▶ But: O(n3 log(n)) → costly to solve when n large
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Previously...

Entropic (regularized) optimal transport – discrete formulation
(discrete measure → discrete measure)

α =

n∑
i=1

αiδxi β =

m∑
j=1

βj δyj

OTε(α, β)
def.
= min

P:P1=α,P⊤1=β

∑
i,j

CijPij + εE(P)

with E(P) =
∑

ij Pij log(Pij )

▶ Can be solved using Sinkhorn algorithm: matrix product update only
with element-wise operations

Cuturi, Sinkhorn Distances: Lightspeed Computation of Optimal
Transportation Distances. NeuRIPS 2013
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Previously...

Entropic (regularized) optimal transport

OTε(α, β)
def.
= min

P:P1=α,P⊤1=β

∑
i,j

CijPij + εE(P)

with E(P) =
∑

ij Pij log

(
Pij

αiβj

)
▶ Initialize: K = e−C/ε, v = 1

▶ Update till convergence:
▶ u =

α

Kv
▶ v =

β

K⊤u
▶ Pij = uiKij vj

▶ Element-wise operations: O(n2); can be done in parallel with GPU

Cuturi, Sinkhorn Distances: Lightspeed Computation of Optimal
Transportation Distances. NeuRIPS 2013
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Previously...

Entropic (regularized) optimal transport – general form

OTε(α, β)
def.
= min

π:π1=α,π2=β

∫ ∫
C (x , y)dπ(x , y) + εE(π)

with E(P) =
∑

ij Pij log

(
Pij

αiβj

)
▶ Solution always exists and unique
▶ Differentiable
▶ But: not a distance

Cuturi, Sinkhorn Distances: Lightspeed Computation of Optimal
Transportation Distances. NeuRIPS 2013
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Partial Optimal Transport

Motivation: standard OT requires
▶

∑
i αi =

∑
j βj (and usually equals 1).

▶ All of the mass from α needs to be transfer to β

−→ Partial OT focuses on transporting a fraction of mass
0 ≤ m ≤ min(

∑
i αi ,

∑
j βj )
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Partial Optimal Transport

A relaxation of constraint of the Kantorovic OT problem

Partial OT(α, β)
def.
= min

P:P1≤α,P⊤1≤β

∑
i,j

CijPij with 1
⊤P1 = m

▶ Equality constraints are relaxed, now only need total transported
mass to be equal to m > 0

▶ Allow distributions with different total mass when
m ≤ min(1⊤α,1⊤β)

▶ But: cannot be solved using linear programming/Sinkhorn because
constraints are now different

Figalli. The optimal partial transport problem. Archive for Rational
Mechanics and Analysis, 2010
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Partial Optimal Transport

Solution: Adding dummy variables to make Partial OT become
standard OT

˜Partial OT(α, β)
def.
= min

P̃:P̃1=α̃,P̃⊤1=β̃

∑
i,j

C̃ij P̃ij , with

P̃ =

[
P b
a⊤ 0

]
, C̃ =

[
C ξ1n

ξ1⊤
n 2ξ + cmax

]
, α̃ = [α̃, β⊤

1−m ], β̃ = [β, α̃⊤
1−m ]

▶ This means: solving the augmented problem ˜Partial OT to find P .

Chapel et al. Partial Optimal Transport with Applications on
Positive-Unlabeled Learning. NeuRIPS 2020.
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Partial Optimal Transport

Assuming initial mass
∑

i αi =
∑

j βj = 1.0

−→ With small m only a small fraction of the mass get transported,
and vice versa
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Unbalanced Optimal Transport

Another type of relaxation for the contraint: adding divergence as
regularisation and removing mass contraint completely
−→ Unbalanced OT

UOT(α, β)
def.
= min

P

∑
i,j

CijPij + τKL(P ||α) + τKL(P ||β)

with KL(p||q) the Kullback-Leibler divergence
▶ τ → +∞: standard OT
▶ τ → 0: some thing call the Hellinger distance:

H 2(α, β)
def.
=

1
2
∥
√
α−

√
β∥2

2

But: how to solve this problem given now it looks more complicated?

[Liereo, Mielke, Savaré 2015], [Chizat, Schmitzer, Peyré, Vialard 2015]
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Unbalanced Optimal Transport

Entropic regularization to the rescue:

UOTε(α, β)
def.
= min

P

∑
i,j

CijPij+τKL(P ||α)+τKL(P ||β)+εKL(P ||α⊗β)

where α⊗ β
def.
= αβ⊤ is the measure product.

▶ UOTε objective is convex and differentiable
▶ Sinkhorn’s algorithm update

▶ u =
( α

Kv

)1+ε/τ

v =

(
β

K⊤u

)1+ε/τ

▶ Pij = uiKij vj

▶ Note: formula is simplified, only for KL-divergence; but can be any
type of divergence belongs to the so-called f -divergence

Chizat, Schmitze, Peyré, Vialard. Scaling algorithms for unbalanced optimal
transport problems. Mathematics of Computation 2018.

16



Outline

Reminder on Optimal Transport

Some Extensions of Optimal Transport

Optimal Transport across different spaces

17



Motivation for Gromov-Wasserstein distance

Reminder: the OT problem we define above is technicall called
Wasserstein distance

α =

n∑
i=1

αiδxi β =

m∑
j=1

βj δyj

W p
p (α, β)

def.
= min

P:P1=α,P⊤1=β

∑
i,j

CijPij with Cij = d(xi , yj )
p

However...
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Motivation for Gromov-Wasserstein distance

▶ Objective: matching points between X a 3D surface and Y 2D surface
▶ How to measure distance between the 3D and 2D space? (d(xi , yj )

does not exist)

−→ Need to define different kind of distance
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Gromov-Wasserstein distance

(D , α) α =

n∑
i=1

αiδxi Di,i ′ = d(xi , xi ′)

(D̄ , β) β =

m∑
j=1

βj δyj D̄j ,j ′ = d(xi , xj ′)

−→ Gromov Wasserstein distance

GWp
p(D , α, D̄ , β)

def.
= Ep

D,D̄ = min
P:P1=α,P⊤1=β

∑
i,i ′,j ,j ′

|Di,i ′−D̄j ,j ′ |pPi,jPi ′,j ′

▶ GW-2 defines a distance (up to isometries – skip definition) [Memoli
2011]

▶ Search for transport plans that preserve the pairwise relationships
between samples

Memoli (2011); Sturm (2012)
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Gromov-Wasserstein distance

General formulation:

GW2
2(dX , α, dY , β)

def.
=

min
π:π1=α,π2=β

∫
X 2×Y 2

|dX (x , x ′)− dy(y , y ′)|2dπ(x , y)dπ(x ′, y ′)
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Solving GW problem

▶ Non-convex
▶ NP-hard to solve (means: very long time to find solutions, if they

exist)

−→ Solution 1: Entropic-regularized Gromov-Wasserstein
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Entropic Gromov-Wasserstein

GWp
p(D , α, D̄ , β)

def.
= min

P:P1=α,P⊤1=β

∑
i,i ′,j ,j ′

|Di,i ′ − D̄j ,j ′ |pPi,jPi ′,j ′

− ε
∑
i,j

Pi,j log

(
Pi,j

αiβj

)
−→ Sinkhorn’s algorithm update

▶ Initialize P = α⊗ β

▶ Repeat until convergence:
▶ P̃ = −DPD̄
▶ P = sinkhorn(α, β, P̃)

Note: technically the algorithm we solve above is projected mirror
descent [Benamou et al. 2015]

Peyré, Cuturi, Solomon. Gromov-wasserstein averaging of kernel and distance
matrices. ICML 2016
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Application: shape analysis
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Application: graph learning

▶ Caveat: AFAIK current OT works deal only undirected graphs
G def.

= (V ,E) with n nodes

▶ V def.
= {xi}i∈[n] set of nodes (vertices)

▶ E def.
= {(xi , xj )}xi ,xj∈V

▶ Possible distance matrices: Adjacency matrix, graph Laplacian,
geodesic (shortest path distance)
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Fused Gromov-Wasserstein Distance

▶ Each node in V now represents a feature (x ∈ Rd )
▶ Fused GW: interpolating between Wasserstein and

Gromov-Wasserstein distance

Vayer et al. Optimal Transport for structured data with application on
graphs. ICML 2019
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Fused Gromov-Wasserstein Distance

For α ∈ [0, 1]:

FGWp
p,α(α, β)

def.
= min

P:P1=α,P⊤1=β∑
i,j ,i ′,j ′

{(1 − α)d(ai , bj )
p + α|dX (xi , yk )− dY (xj , yl )|pPi,jPk ,l}

Interpolating between Wasserstein and Gromov-Wasserstein distance:
▶ limα→0 FGWp,α(α, β) = Wp(α, β)

p

▶ limα→1 FGWp,α(α, β) = GWp(α, β)
p

▶ Define a metric for p = 1 and semi-metric for p > 1

Vayer et al. Optimal Transport for structured data with application on
graphs. ICML 2019
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Fused Gromov-Wasserstein Distance

When p = 2:
▶ Gradient of FGW can be factorized, similar to [Peyré et al 2016]
▶ Finding optimal plan with Conditional Gradient (Frank-Wolfe)

method

Vayer et al. Optimal Transport for structured data with application on
graphs. ICML 2019
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Unbalanced Gromov-Wasserstein Distance
Similar to standard OT: relaxing the mass contraint, but for GW

distance

UGWp(α, β)
p def.

= min
P

L(P)

= min
P

∑
i,i ′,j ,j ′

|Di,i ′ − D̄j ,j ′ |pPi,jPi ′,j ′+

τKL(P1 ⊗ P1||α⊗ α) + τKL(P2 ⊗ P2||β ⊗ β)

▶ Note that now the divergence term are between tensor product
measure → quadratic divergence

▶ Solutions exist on compact space (and a additional technical
condition)

▶ However: NP-hardness to find the minimizer, not proper distance
Séjourné et al. 2021. The Unbalanced Gromov Wasserstein Distance: Conic

Formulation and Relaxation. ICML 2021
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Unbalanced Gromov-Wasserstein Distance
Idea: ease up computation by entropic regularization

UGWp,ε(α, β)
p def.

= min
P

L(P) + εKL(P ⊗ P ||α⊗ β)

But: computation is heavy, no Sinkhorn-update scheme available
−→ For special case p = 2, lower bound with a different term that
can be efficiently approximate with Sinkhorn-algorithm

UGW2,ε(α, β) ≥ inf
P,G

F(P ,G) + εKL(P ⊗ G||α⊗ β)2

where

F(P ,G)
def.
=

∑
i,j ,k ,l

|dX (xi , yk )− dY (xj , yl )|2Pi,jGk ,l+

KL(P1 ⊗ G1||α⊗ α) + KL(P2 ⊗ G2||β ⊗ β)

Séjourné et al. 2021. The Unbalanced Gromov Wasserstein Distance: Conic
Formulation and Relaxation. ICML 2021
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Unbalanced Gromov-Wasserstein Distance
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