Some Contributions to Modern Multiple Hypothesis Testing in High-dimension

Binh Nguyen Inria Parietal, CEA, Laboratoire de Mathématiques d'Orsay, EDMH, Université Paris-Saclay December 10, 2021

Ph.D. Advisors:

Sylvain Arlot (Université Paris-Saclay) Bertrand Thirion (INRIA Parietal, CEA)

Ph.D. Committee:

tee: Jelle Goeman (Leiden University – Reviewer) Etienne Roquain (LPSM, Sorbonne Université – Reviewer) Jeanette Mumford (Stanford University) Claire Boyer (LPSM, Sorbonne Université) Christophe Giraud (Université Paris-Saclay)

Outline

Motivation

Aggregation of Multiple Knockoffs

A Conditional Randomization Test for High-dimensional Logistic Regression

Conclusions & Perspectives

Outline

Motivation

Aggregation of Multiple Knockoffs

A Conditional Randomization Test for High-dimensional Logistic Regression

Conclusions & Perspectives

Reproducibility Crisis: on Popular Media...

The New Hork Times

RAW DATA

New Truths That Only One Can See

f 💿 🖌 📼 🍝 🗌

Carl Wiens

By George Johnson Jan. 20, 2014

Since 1955, <u>The Journal of Irreproducible Results</u> has offered "spoofs, parodies, whimsies, burlesques, lampoons and satires"

https://www.economist.com/leaders/2013/10/21/how-science-goes-wrong https://www.nytimes.com/2014/01/21/science/new-truths-that-only-one-can-see.html

Reproducibility Crisis: ...and Scientific Essay/Paper

Most Discoveries Might Be False (Ioannidis, 2005)

Naive Hypothesis Testing

▶ p = 100,000 hypotheses (brain voxels), only 2,000 are important.

Testing at 5% significant level, assume all important variables are selected:

False Discovery Proportion =
$$\frac{5\% \times 98,000}{2000 + 5\% \times 98,000} \approx 70\%$$

Most Discoveries Might Be False (Ioannidis, 2005)

Naive Hypothesis Testing

▶ p = 100,000 hypotheses (brain voxels), only 2,000 are important.

Testing at 5% significant level, assume all important variables are selected:

$$\text{False Discovery Proportion} = \frac{5\% \times 98,000}{2000 + 5\% \times 98,000} \approx 70\%$$

False Discovery Rate (Benjamini and Hochberg, 1995)

- ► False Discovery Rate: the average number of *false discoveries* made among all discoveries.
- ► FDR control is less conservative than Family-Wise Error Rate control

Marginal Inference

X ∈ ℝ^{n×p}, y ∈ ℝⁿ. Example: X is MRI data, y outcome
 Linear Model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta}^{\mathbf{0}} + \sigma\boldsymbol{\xi},$$

with $\sigma > 0$, $\boldsymbol{\xi} \sim \mathcal{N}(0, \mathbf{I}_n)$

- Support set $\mathcal{S} \stackrel{\Delta}{=} \{j \in [p] \mid \beta_i^0 \neq 0\};$
- Objective: find $\hat{\mathcal{S}} \subset \mathcal{S}$ as large as possible

Marginal Inference

X ∈ ℝ^{n×p}, y ∈ ℝⁿ. Example: X is MRI data, y outcome
 Linear Model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta}^{\mathbf{0}} + \sigma\boldsymbol{\xi},$$

with $\sigma > 0$, $\boldsymbol{\xi} \sim \mathcal{N}(0, \mathbf{I}_n)$

- Support set $\mathcal{S} \stackrel{\Delta}{=} \{j \in [p] \mid \beta_i^0 \neq 0\};$
- Objective: find $\hat{\mathcal{S}} \subset \mathcal{S}$ as large as possible

Marginal Testing

For each $j = 1, \ldots p$:

(null) $\mathcal{H}_0^j: X_{*,j} \perp y$ vs. (alternative) $\mathcal{H}_\alpha^j: X_{*,j} \not\perp y$

 \rightarrow FDR control: easy, solvable problem (Poldrack et al., 2012)

Conditional Inference

Source: Weichwald et al. (2015)

Conditional Independence Testing

Generalized Linear Model (GLM): $y = g(X\beta^0) + \sigma \xi$ Testing variable j but also taking interaction with other variables X_{-j}

 $\text{(null)} \ \mathcal{H}_0^j: X_{*,j} \perp y \mid \mathrm{X}_{-j} \quad \text{vs.} \quad (\text{alternative}) \ \mathcal{H}_\alpha^j: X_{*,j} \not \perp y \mid \mathrm{X}_{-j},$

or, equivalently

 $(\text{null}) \ \mathcal{H}_0^j: \beta_j^0 = 0 \quad \text{vs.} \quad (\text{alternative}) \ \mathcal{H}_\alpha^j: \beta_j^0 \neq 0.$

FDR control with Conditional Inference

Conditional inference is challenging in <u>high-dimensional settings</u>: how to obtain statistical guarantee: p-value, confidence interval?

 \longrightarrow FDR controlling?

¹Barber and Candès (2015); Candès et al. (2018)

FDR control with Conditional Inference

Conditional inference is challenging in <u>high-dimensional settings</u>: how to obtain statistical guarantee: p-value, confidence interval?

 \longrightarrow FDR controlling?

Knockoff Inference¹

State-of-the-art in high-dimension conditional inference with guaranteed FDR control

¹Barber and Candès (2015); Candès et al. (2018)

Knockoff Inference

Knockoff variables (Candès et al., 2018)

 $ilde{X} = (ilde{x}_1, \dots, ilde{x}_p)$ is model-X knockoff variables of $X = (x_1, \dots, x_p)$ iff:

- 1. For all subset $\mathcal{K} \subset \{1, \dots, p\}$: $(X, \tilde{X})_{swap(\mathcal{K})} \stackrel{d}{=} (X, \tilde{X})$
- 2. $\tilde{X} \perp y \mid X$

Knockoff variables: noisy copies of original variables

Knockoff Inference

Step 1 - Model-X Knockoff

Assuming distribution of X is known, construct knockoff variables, concatenate $[X, \tilde{X}] \in \mathbb{R}^{n \times 2p}$

Step 2

Calculate knockoff test-statistics W: Lasso coefficient-difference, obtain

$$\hat{oldsymbol{eta}} = \min_{\mathbf{w} \in \mathbb{R}^{2p}} rac{1}{2} \|\mathbf{y} - [\mathbf{X}, \mathbf{ ilde{X}}] oldsymbol{eta}\|_2^2 + \lambda \|oldsymbol{eta}\|_1$$

then take the difference: $W_j = |\hat{eta}_j(\lambda)| - |\hat{eta}_{j+p}(\lambda)|$ for each j

Knockoff Inference

Step 3 - FDR control threshold

For given t > 0, False Discoveries Proportion can be estimated as:

$$\widehat{ ext{FDP}}(t) = rac{1+\#\{j\in [p]\mid W_j\leq -t\}}{\#\{j\in [p]\mid W_j\geq t\}\vee 1}$$

then, for FDR level $\alpha \in (0, 1)$, calculate the threshold

$$au = \min\left\{t > 0 \mid \widehat{\mathtt{FDP}}(t) \le \alpha\right\}$$

Step 4

Select the variables: $\hat{S}(au) = \{j \in [p] \mid W_j \geq au\}$

Figure: Knockoff Statistic Distribution

Figure: Knockoff Statistic Distribution

Figure: Knockoff Statistic Distribution

Figure: Knockoff Statistic Distribution

Candès et al. (2018, Lemma 3.3): Under $\mathcal{H}_0^j : \beta_j^0 = 0$, the distribution of W_j is symmetric around 0, *i.e.* $(W_j, -W_k)$ are exchangeable.

Knockoff Inference: Theoretical Guarantee

Theorem (Barber and Candès, 2015; Candès et al., 2018)

$$\operatorname{FDR}(\tau) = \mathbb{E}\left[\frac{|\hat{S}(\tau) \cap S^{c}|}{|\hat{S}(\tau)| \vee 1}
ight] \leq \alpha,$$

where $\mathcal{S}^c = [p] \setminus \mathcal{S}$: set of null index.

- Result is non-asymptotic.
- Model-X assumption: distribution of X is known.
- Proof: using martingale theory (optional stopping time theorem).

Knockoff Inference: Theoretical Guarantee

Theorem (Barber and Candès, 2015; Candès et al., 2018)

$$\operatorname{FDR}(\tau) = \mathbb{E}\left[\frac{|\hat{S}(\tau) \cap S^c|}{|\hat{S}(\tau)| \vee 1}
ight] \le \alpha,$$

where $\mathcal{S}^c = [p] \setminus \mathcal{S}$: set of null index.

- Result is non-asymptotic.
- Model-X assumption: distribution of X is known.
- Proof: using martingale theory (optional stopping time theorem).

Demonstration: Instability of Knockoff Procedure

$$\begin{split} & h = 500 , \ p = 1000 \\ & X \sim \mathcal{N}(0, \Sigma) \\ & \bullet \Sigma = \begin{bmatrix} 1 & \rho & \rho^2 & \dots & \rho^{p-1} \\ \rho^1 & 1 & \rho & \dots & \rho^{p-2} \\ \vdots & \dots & \ddots & \dots & \vdots \\ \rho^{p-2} & \rho^{p-3} & \dots & 1 & \rho \\ \rho^{p-1} & \rho^{p-2} & \rho^{p-3} & \dots & 1 \end{bmatrix}, \text{ with } \rho \in [0, 1) \\ & \bullet \xi \sim \mathcal{N}(0, I_n) \\ & \bullet \text{ sparsity} = \frac{|\mathcal{S}|}{p} \end{aligned}$$

Demonstration: Instability of Knockoff Procedure

Figure: 100 runs of knockoff inference on the same simulated dataset n=500, p=1000, snr=3.0, $\rho = 0.7$, sparsity = 0.06

Outline

Motivation

Aggregation of Multiple Knockoffs

A Conditional Randomization Test for High-dimensional Logistic Regression

Conclusions & Perspectives

Proposed Solution: Knockoff Statistics conversion

Proposed Solution: Knockoff Statistics conversion

Introduce the intermediate p-values: convert Knockoff statistic W_j to \hat{p}_j :

$$\hat{p}_j = egin{cases} rac{1+\#\{k: W_k \leq -W_j\}}{p} & ext{if} \quad W_j > 0 \ 1 & ext{if} \quad W_j \leq 0 \end{cases}$$

AKO - Aggregation of Multiple Knockoffs

- Running multiple sampling of knockoffs, find knockoff statistics
- Convert knockoff statistics to intermediate p-values
- Quantile-aggregation of p-values (Meinshausen et al., 2009)

N., Chevalier, Thirion & Arlot (2020)

AKO - Aggregation of Multiple Knockoffs

- Running multiple sampling of knockoffs, find knockoff statistics
- Convert knockoff statistics to intermediate p-values
- Quantile-aggregation of p-values (Meinshausen et al., 2009)

Step 1: For b = 1, 2, ..., B:

Run knockoff sampling, calculate test statistic { W_j^(b) }^p_{j=1}
 Convert the test statistic W_i^(b) to p̂_i^(b):

$$\hat{p}_{j}^{(b)} = egin{cases} rac{1+\#\{k: W_{k}^{(b)} \leq -W_{j}^{(b)}\}}{p} & ext{if} \quad W_{j}^{(b)} > 0 \ 1 & ext{if} \quad W_{j} \leq 0 \end{cases}$$

N., Chevalier, Thirion & Arlot (2020)

AKO – Aggregation of Multiple Knockoffs

Step 2 – P-values Aggregation (Meinshausen et al., 2009)

$$ar{p}_j = \min\left\{1, \gamma^{-1} q_\gamma(\hat{p}_j^{(b)})
ight\} \quad orall j \in [p]$$

For $\gamma \in (0,1)$ with $q_{\gamma}(\cdot)$ the empirical γ -quantile function.

N., Chevalier, Thirion & Arlot (2020)

AKO - Aggregation of Multiple Knockoffs

Step 3 – FDR control with
$$\{\bar{\mathbf{p}}_j\}_{j=1}^p$$

Step 4 – Estimate \hat{S}

$$\hat{\mathcal{S}}_{\texttt{AKO}} = \{j \in [p] \mid \bar{p}_j \leq \tau\}$$

N., Chevalier, Thirion & Arlot (2020)

that:

Theoretical Results for AKO

Assumption (Null Distribution of Knockoff Statistic)

The null knockoff statistics $(W_j)_{j \in S^c}$ are i.i.d.

Lemma

Under the above assumption, and furthermore assume $|S^c| \ge 2$, for all $j \in S^c$ the intermediate p-value \hat{p}_j satisfies

$$orall t \in (0,1): \quad \mathbb{P}(\hat{p}_j \leq t) \leq rac{p}{|\mathcal{S}^{\mathsf{c}}|} t$$

Remark

An improved version of Lemma 2, N., Chevalier, Thirion & Arlot (2020).

Theoretical Results for AKO

Theorem (Finite-sample guarantee of FDR control)

Assuming the null knockoff statistics $(W_j)_{j\in S^c}$ are i.i.d., and $|S^c| \geq 2$, then for an arbitrary number of samplings B, the output \hat{S}_{AKO} of Aggregation of Multiple Knockoff (AKO) controls FDR under predefined level $\alpha \in (0, 1)$, i.e.

$$\mathbb{E}\left[\frac{|\hat{\mathcal{S}}_{AKO} \cap \mathcal{S}^{c}|}{|\hat{\mathcal{S}}_{AKO}| \vee 1}\right] \leq \alpha$$

Remark

- An improved version of Theorem 1, N., Chevalier, Thirion & Arlot (2020).
- AKO with B = 1 is equivalent to KO.

Experimental Results - Synthetic Data

Histogram of FDP & Power under the <u>same simulated dataset</u>:
▶ 2500 runs of Original Knockoff (KO - top)

▶ 100 runs of Aggregated Knockoff (AKO, B = 25 - bottom)

Experimental Results - Synthetic Data

- Vary each of the three simulation parameters while keeping the others fixed
- Benchmarking methods:
 - Ours: Aggregation of Multiple Knockoffs (AKO)
 - Vanilla Knockoff (KO) (Barber and Candès, 2015; Candès et al., 2018)
 - Related knockoff aggregation methods: Holden and Helton (2018) (KO-HL), Emery and Keich (2019) (KO-EK), Gimenez and Zou (2019) (KO-GZ)
 - Debiased Lasso (DL-BH) (Javanmard and Javadi, 2019)

Experimental Results - Synthetic Data

 Vary each of the three simulation parameters while keeping the others fixed

Figure: 100 runs with varying simulation parameters. Default: $SNR = 3.0, \rho = 0.5$, sparsity = 0.06. FDR is controlled at level $\alpha = 0.1$.

Experimental Results - Brain Imaging

- ▶ Data: Human Connectome Project
- Objective: predict the experimental condition per task given brain activity
- n = 900 subjects, $p \approx 212000$
- Preprocessing: dimension reduction by clustering

 $p=212000 \longrightarrow p=1000$

Figure: Detection of significant brain regions for HCP data – Emotion task (face vs. shape) (900 subjects)

- FDR control at $\alpha = 0.1$.
- Orange: brain areas with positive weight.
- ▶ Blue: brain areas with negative weight.
Experimental Results - Brain Imaging

Figure: Jaccard index measuring the Jaccard similarity between the KO/AKO solutions and the Debiased Lasso (DL) solution over 7 tasks of HCP900.

Aggregation of Multiple Knockoffs | 27

Outline

Motivation

Aggregation of Multiple Knockoffs

A Conditional Randomization Test for High-dimensional Logistic Regression

Conclusions & Perspectives

Binary classification with logistic relationship

- ▶ Binary response vector $y \in \{0, 1\}^n$.
- Logistic relationship

$$\mathbb{P}(\mathbf{y}_i = 1 \mid \mathbf{X}_{i,*}) = \frac{1}{1 + \exp(-\mathbf{X}_{i,*}^T \boldsymbol{\beta}^0)}.$$

• Estimate β^0 with Penalized Logistic Regression:

$$\hat{\boldsymbol{\beta}}^{\texttt{PEN}} = \text{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \sum_{i=1}^n \log \left[1 + \exp(-y_i(\mathbf{X}_{i,*}^T \boldsymbol{\beta})) \right] + \lambda \left\| \boldsymbol{\beta} \right\|_1$$

Penalized Logistic Regression

$$\hat{oldsymbol{eta}}^{ extsf{PEN}} = extsf{argmin}_{oldsymbol{eta} \in \mathbb{R}^p} \sum_{i=1}^n \log \left[1 + \exp(-y_i(\mathbf{X}_{i,*}^T oldsymbol{eta}))
ight] + \lambda \left\|oldsymbol{eta}
ight\|_1.$$

▶ When n < p: hard problem (Sur and Candès, 2019; Zhao et al., 2020) → P-value? Confidence interval? Conditional Independence Testing?

• Original Knockoff Inference: possible with ℓ_1 -logistic loss.

Penalized Logistic Regression

$$\hat{oldsymbol{eta}}^{ extsf{PEN}} = extsf{argmin}_{oldsymbol{eta} \in \mathbb{R}^p} \sum_{i=1}^n \log \left[1 + \exp(-y_i(\mathbf{X}_{i,*}^T oldsymbol{eta}))
ight] + \lambda \left\| oldsymbol{eta}
ight\|_1.$$

▶ When n < p: hard problem (Sur and Candès, 2019; Zhao et al., 2020) → P-value? Confidence interval? Conditional Independence Testing?

• Original Knockoff Inference: possible with ℓ_1 -logistic loss.

Conditional Randomization Test (CRT)

Candès et al. (2018): An alternative, more straight-forward method to knockoff inference.

Conditional Randomization Test (CRT)

Algorithm 1: Conditional Randomization Test

1 INPUT dataset (X, y), with $X \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^{n}$, number of sampling runs B, test statistic T_i , conditional distribution $P_{i|-i}$ for each $i = 1, \ldots, p$; 2 OUTPUT vector of p-values $\{\hat{p}_i\}_{i=1}^p$; 3 for j = 1, 2, ..., p do for b = 1, 2, ..., B do 4 1. Generate $\tilde{X}_{*,j}^{(b)}$, a noisy variable from $P_{j|-j}$; 5 2. Compute test statistics T_j for original variable and $\tilde{T}_i^{(b)}$ 6 for noisy variables; end 7 Compute the empirical p-value 8 $\hat{p}_j = rac{1 + \sum_{b=1}^B \mathbb{1}_{\{\tilde{T}_j^{(b)} \ge T_j\}}}{1 + P}$ 9 end A Conditional Randomization Test for High-dimensional Logistic Regression | 31

Conditional Randomization Test (CRT)

Distillation Conditional Randomization Test (Liu et al., 2020): analytical formula for p-values

- Remove the multiple sampling of noisy variables.

Distillation Conditional Randomization Test (dCRT)

Algorithm 2: Lasso-dCRT (Liu et al., 2020)

1

1 INPUT dataset (X, y),
$$X \in \mathbb{R}^{n \times p}$$
, $y \in \mathbb{R}^{n}$;
2 OUTPUT vector of p-values $\{p_{j}\}_{j=1}^{p}$;
3 $\hat{\mathcal{S}}^{\text{SCREENING}} = \{j \in [p] \mid \hat{\beta}_{j}^{\text{PEN}} \neq 0\}$;
4 for $j \notin \hat{\mathcal{S}}^{\text{SCREENING}}$ do
5 $\mid p_{j} = 1$
6 end
7 for $j \in \hat{\mathcal{S}}^{\text{SCREENING}}$ do
8 1. Distill info. of X_{-j} to X_{*,j} and y, obtain $\hat{\beta}^{d_{X_{*,j}}}$ and $\hat{\beta}^{d_{y,j}}$
9 2. Obtain test statistic:
 $T_{j} = \sqrt{n} \frac{(y - X_{-j}\hat{\beta}^{d_{y,j}})^{T}(x_{j} - X_{-j}\hat{\beta}^{d_{X_{*,j}}})}{\|y - X_{-j}\hat{\beta}^{d_{y,j}}\|_{2}\|X_{*,j} - X_{-j}\hat{\beta}^{d_{X_{*,j}}}\|_{2}}$
3. Compute (two-sided) p-value $p_{j} = 2[1 - \Phi(|T_{j}|)]$
10 end

Distillation Operation

For each variable j, remove all the conditional information of the remaining variables X_{-j} to $X_{*,j}$ and to y

Lasso-Distillation

$$\hat{\boldsymbol{\beta}}^{d_{y,j}} = \operatorname{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^{p-1}} \sum_{i=1}^{n} \log \left[1 + \exp(-y_i(\mathbf{X}_{i,-j}^T \boldsymbol{\beta})) \right] + \lambda \|\boldsymbol{\beta}\|_1$$

$$\hat{\boldsymbol{\beta}}^{d_{\mathbf{X}_{*,j}}}(\lambda) = \operatorname{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^{p-1}} \frac{1}{2} \|\mathbf{X}_{*,j} - \mathbf{X}_{-j}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1$$

dCRT test statistics

со

$$T_{j} = \sqrt{n} \frac{(\mathbf{y} - \mathbf{X}_{-j}\hat{\boldsymbol{\beta}}^{d_{y},j})^{T}(\mathbf{x}_{j} - \mathbf{X}_{-j}\hat{\boldsymbol{\beta}}^{d_{\mathbf{X}_{*},j}})}{\|\mathbf{y} - \mathbf{X}_{-j}\hat{\boldsymbol{\beta}}^{d_{y},j}\|_{2}\|\mathbf{X}_{*,j} - \mathbf{X}_{-j}\hat{\boldsymbol{\beta}}^{d_{\mathbf{X}_{*,j}}}\|_{2}} \xrightarrow{\mathcal{H}_{0}^{j}} \mathcal{N}(0,1) \,.$$

nditional to y and \mathbf{X}_{-j}

Distillation Operator for Logistic Regression?

- Lasso-distillation in Liu et al. (2020): model misspecification with logistic relationship
- Demo:

▶ 100 simulations, p = 400, X ~ $\mathcal{N}(0, \Sigma)$ with Σ a Toeplitz matrix.

Null distribution of dCRT test statistic

- QQ-Plot for one null dCRT statistic, 1000 samplings
- Fixed p = 400 varying, $n \in \{200, 400, 800\}$
- Theoretical quantile is of a standard Gaussian distribution

Null distribution of dCRT test statistic

- QQ-Plot for one null dCRT statistic, 1000 samplings
- Fixed p = 400 varying, $n \in \{200, 400, 800\}$
- Theoretical quantile is of a standard Gaussian distribution

🗥 Null distribution is far from standard normal

Adaptation of CRT to high-dim logistic regresssion

- ▶ Ning and Liu (2017): T_i^{decorr} decorrelating test-statistic T_j
- Finding $\hat{\beta}^{d_{y},j}$: find $\hat{\beta}^{\text{PEN}}$, then omitting the *j*th coefficient
- Finding $\hat{\beta}^{d_{\mathbf{X}_{*},j}}$: using weighted Lasso instead of standard Lasso.

Adaptation of CRT to high-dim logistic regresssion

- ▶ Ning and Liu (2017): T_i^{decorr} decorrelating test-statistic T_j
- Finding $\hat{\beta}^{d_y,j}$: find $\hat{\beta}^{\text{PEN}}$, then omitting the *j*th coefficient
- Finding $\hat{\beta}^{d_{X_{*,j}}}$: using weighted Lasso instead of standard Lasso.

Intuition: based on classical Rao's test score

$$\hat{\boldsymbol{\beta}}^{\text{PEN}} = \operatorname{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^{p}} \underbrace{\sum_{i=1}^{n} \log \left[1 + \exp(-y_{i}(\boldsymbol{X}_{i,*}^{T} \boldsymbol{\beta}))\right]}_{\ell(\boldsymbol{\beta})} + \lambda \|\boldsymbol{\beta}\|$$
$$T_{j}^{\text{Rao}} = n^{1/2} \nabla_{\beta_{j}} \ell(\boldsymbol{\beta}) \hat{\boldsymbol{\Gamma}}_{j|-j}^{-1/2}$$

In high-dimension, T_j^{Rao} is biased.
 The general formula of decorrelated test score T_j^{decorr} is a debiased version of T_j^{Rao}.

Proposed Solution: CRT-Logit

Algorithm 3: CRT-logit

1 INPUT dataset (X, y),
$$X \in \mathbb{R}^{n \times p}$$
, $y \in \mathbb{R}^{n}$;
2 OUTPUT vector of p-values $\{p_{j}\}_{j=1}^{p}$;
3 $\hat{\beta} \leftarrow \text{penalized_MLE}(X, y)$; $\hat{S}^{\text{screening}} \leftarrow \{j \in [p] \mid \hat{\beta}_{j}^{\text{MLE}} \neq 0\}$;
4 for $j \notin \hat{S}^{\text{screening}}$ do
5 $\mid p_{j} = 1$
6 end
7 for $j \in \hat{S}^{\text{screening}}$ do
8 $\mid 1. \hat{\beta}^{d_{X_{*,j}}} \leftarrow \text{scaled_lasso}(X_{*,j}, X_{*,-j})$
9 $\mid 2. \hat{\beta}^{d_{y,j}} \leftarrow (\hat{\beta}_{1}, \hat{\beta}_{2}, \dots, \hat{\beta}_{j-1}, \hat{\beta}_{j+1}, \dots, \hat{\beta}_{p})$
10 $\mid 3. T_{j}^{\text{decorr}} \leftarrow \text{decorrelated_test_score}(X, y)$
11 $\mid 4. p_{j} \leftarrow 2[1 - \Phi(\mid T_{j}^{\text{decorr}} \mid)]$
12 end

Effectiveness of decorrelation on test statistics

Simulation: Mildly High-dimensional Scenario

- ▶ 100 runs of simulations across varying parameters; FDR controlled $\alpha = 0.1$.
- Methods: Debiased Lasso (dlasso), model-X Knockoff (KO-logit), original dCRT (dCRT), our version of CRT (CRT-logit).

Problem: Curse of Dimensionality

A Failure of detecting variables when dimension grows large.

Inference with Clusters of Variables

Solution: Dimension reduction via spatially constrained clustering $p \longrightarrow C$ such that $C \ll p$: cCRT-logit

Stabilize inference results with multiple clusterings + p-values aggregation (cCRT-logit-agg):

Statistical inference with spatial tolerance

 \blacktriangleright Brain spatial organization: "close" voxels \leftrightarrow "close" weights

- Null weight voxels
- Positive weight voxels
- Negative weight voxels
- ▶ Spatial tolerance δ for false discoveries: FDR^{δ}

False Discovery Rate with spatial tolerance

Distance between voxels: d(j,k) for (j,k) ∈ [p]²
δ-null region: N^δ = {j ∈ [p] | ∀k ∈ [p], d(j,k) ≤ δ ⇒ β⁰_k = 0}

FDP^{δ} and FDR^{δ}

Given an estimation of the support \hat{S} :

$$\begin{aligned} \text{FDP}^{\delta} &= \frac{|\{N^{\delta} \cap \hat{\mathcal{S}}\}|}{|\hat{\mathcal{S}}| \vee 1} \\ \text{FDR}^{\delta} &= \mathbb{E}[\text{FDP}^{\delta}] \end{aligned}$$

Theoretical Results for CRT-logit

Estimate support, for $\alpha \in (0, 1)$: • $\hat{S}_{cCRT-logit} = FDR_control(\{\hat{p}_{j}^{cCRT-logit}\}_{j=1}^{p}, \alpha)$ • $\hat{S}_{cCRT-logit-agg} = FDR_control(\{\hat{p}_{j}^{cCRT-logit}\}_{j=1}^{p}, \alpha)$

Conjecture

If the clusters are independent, and all the clusters from all partitions considered have a diameter smaller than δ , and the variables located between clusters are positively correlated, then, the output $\hat{S}_{cCRT-logit}$ and $\hat{S}_{cCRT-logit-agg}$ control FDR^{δ} under predefined level $\alpha \in (0, 1)$, *i.e.*

$$\limsup_{n \to \infty} \mathbb{E}\left[\frac{|\hat{\mathcal{S}}_{\texttt{cCRT-logit}} \cap N^{\delta}|}{|\hat{\mathcal{S}}_{AKO}| \vee 1}\right] \leq \alpha$$

and

$$\limsup_{n \to \infty} \mathbb{E}\left[\frac{|\hat{\mathcal{S}}_{\texttt{cCRT-logit-agg}} \cap N^{\delta}|}{|\hat{\mathcal{S}}_{AKO}| \vee 1}\right] \leq \alpha$$

where N^{δ} is the δ -null region defined above.

Semi-simulated dataset (HCP 900)

Semi-simulated dataset:

- ▶ Use real data X (e.g. emotion task).
- build β⁰ independently from data of different task, e.g. X_{motor_foot}.
- Generate synthetic responses y from X_{emotion} and β⁰.

Semi-simulated dataset (HCP 900)

- FDR/Average Power of 50 runs of simulations on Human Brain Connectome dataset.
- Parameters: n = 800 (taken from 400 subjects), SNR = 1.5. FDR^δ is controlled at level α = 0.1 and δ = 8.
- Methods (clustering versions): Desparsified Lasso (cdlasso), model-X Knockoff (cKO-logit), original dCRT (cdCRT), our version of CRT (cCRT-logit) and the aggregation of CRT-logit across clusterings (cCRT-logit-agg.)

Semi-simulated dataset (HCP 900)

Related: Ensemble of Clustered Knockoffs

Nguyen et al. (2019), journal version in progress

Outline

Motivation

Aggregation of Multiple Knockoffs

A Conditional Randomization Test for High-dimensional Logistic Regression

Conclusions & Perspectives

Conclusions & Perspectives | 50

Summary

New procedures for statistical inference with high-dimensional data

Aggregation of Multiple Knockoffs

- FDR control guarantee.
- Demonstrated empirically: more stable in inference results and higher statistical power.

Conditional Randomization Test for high-dimensional logistic regression (CRT-logit)

- Reduce computational cost of original CRT.
- Ensemble of clusterings version works well in very high-dimension.

Remark

Clustered version involves additional assumptions for statistical guarantee.

Perspectives

- Formal statement and proof of the Conjecture on FDR control with CRT-logit
- Theoretical analysis of clustering inference with Knockoffs and CRT-logit: relaxing the assumption on independence of clusters.
- Applications for genomics data.
- Generative networks for knockoff variables generation.

Perspectives

- Formal statement and proof of the Conjecture on FDR control with CRT-logit
- Theoretical analysis of clustering inference with Knockoffs and CRT-logit: relaxing the assumption on independence of clusters.
- Applications for genomics data.
- Generative networks for knockoff variables generation.

Thank you for listening!

Second-order Model-X Knockoffs

Shares the first two moments - mean and covariance, *i.e.* :

$$\mathbb{E}[ilde{\mathsf{X}}] = \mathbb{E}[\mathsf{X}], \quad \mathbb{E}[ilde{\mathsf{X}}^T ilde{\mathsf{X}}] = \mathbf{\Sigma} \quad ext{and} \quad \mathbb{E}[ilde{\mathsf{X}}^T \mathsf{X}] = \mathbf{\Sigma} - ext{diag}\{\mathbf{s}\}$$

Additional assumption: X has Gaussian design

$$\longrightarrow \tilde{\mathbf{x}_j} \mid \mathbf{x}_j \stackrel{d}{=} \mathcal{N}(\boldsymbol{\mu}, \mathbf{V})$$

 \longrightarrow Finding diag{s} by:

- Semi-definite Programming (SDP)
- Approximate Semi-definite program (ASDP)
- Equi-correlated

Knockoff Statistic

Definition (Candès et al. (2018))

A knockoff statistic $W = \{W_j\}_{j \in [p]}$ is a measure of feature importance that satisfies the two following properties:

1. Depends only on X, \tilde{X} and y

$$\mathtt{W}=f(\mathtt{X}, ilde{\mathtt{X}},\mathtt{y})$$
, and

2. Swapping the original variable column x_j and its knockoff column \tilde{x}_j will switch the sign of W_j iff j is in the support set S:

$$W_j([\mathrm{X}, \tilde{\mathrm{X}}]_{swap(S)}, y) = \left\{ egin{array}{c} W_j([\mathrm{X}, \tilde{\mathrm{X}}], \mathtt{y}) ext{ if } j \in \mathcal{S}^c \ -W_j([\mathrm{X}, \tilde{\mathrm{X}}], y) ext{ if } j \in \mathcal{S} \end{array}
ight.$$

Theoretical Results for AKO

Assumption (Null Distribution of Knockoff Statistic)

Under the null hypothesis $H_{0,j}$: $\beta_j^0 = 0$, the Knockoff Statistics follow the same null distribution.

Lemma (Lemma 2 – N., Chevalier, Thirion, Arlot, 2020)

Under the above assumption, and furthermore assume $|S^c| \ge 2$, for all $j \in S^c$ the intermediate p-value \hat{p}_j satisfies

$$orall t \in (0,1): \quad \mathbb{P}(\hat{p}_j \leq t) \leq rac{\kappa p}{|\mathcal{S}^c|} t$$

where

$$\kappa = \frac{\sqrt{22} - 2}{7\sqrt{22} - 32} \le 3.24$$

Theoretical Results for AKO

Theorem (Theorem 1 – N., Chevalier, Thirion, Arlot, 2020)

(Finite-sample guarantee of FDR control) If, under the null hypothesis $H_{0,j}: \beta_j^0 = 0$, the Knockoff Statistics follow the same distribution, and if $|S^c| \ge 2$, then for an arbitrary number of samplings B, the output \hat{S}_{AKO} of Aggregation of Multiple Knockoff (AKO) controls FDR under predefined level $\alpha \in (0, 1)$, i.e.

$$\mathbb{E}\left[\frac{|\hat{\mathcal{S}}_{AKO} \cap \mathcal{S}^{c}|}{|\hat{\mathcal{S}}_{AKO}| \vee 1}\right] \leq \kappa \alpha$$

where $\kappa = rac{\sqrt{22}-2}{7\sqrt{22}-32} \leq 3.24.$

AKO extra results - Genome Wide Association Study

- Data: Flowering Phenotype of Arabidopsis Thaliana (FT_GH) n = 166, p = 9938
- Objective: detect association of 174 candidate genes with phenotype FT_GH that dictates flowering time (Atwell et al., 2010).
- Preprocessing: dimension reduction following Slim et al. (2019)

$$p=9938\longrightarrow p=1500.$$

Method	Detected Genes
AKO	AT2G21070, AT4G02780, AT5G47640
KO	AT2G21070
KO-GZ	AT2G21070
DL-BH	

Table: List of detected genes associated with phenotype FT_GH.

From previous studies: AT2G21070 (Kim et al., 2008), AT4G02780 (Silverstone et al., 1998), AT5G47640 (Cai et al., 2007)

Adaptation of CRT to high-dim logistic regresssion

► T_j^{decorr} : Decorrelating test-statistic T_j (Ning and Liu, 2017)

Finding $\hat{\beta}^{d_y,j}$: find $\hat{\beta}^{\text{PEN}}$, then omitting the *j*th coefficient, *i.e.*

$$\hat{\boldsymbol{\beta}}_{j}^{d_{y},j} = (\hat{\beta}_{1}, \hat{\beta}_{2}, \dots, \hat{\beta}_{j-1}, \hat{\beta}_{j+1}, \dots, \hat{\beta}_{p})$$

Finding $\hat{\beta}^{d_{X_{*,j}}}$: using weighted Lasso instead of standard Lasso.

$$\hat{\boldsymbol{\beta}}^{d_{\mathbf{X}_{*,j}}} = \operatorname{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^{p-1}} \frac{1}{n} \sum_{i=1}^{n} \frac{\exp\left(\hat{\boldsymbol{\beta}}^{T} \mathbf{x}_{i}\right)}{[1 + \exp\left(\hat{\boldsymbol{\beta}}^{T} \mathbf{x}_{i}\right)]^{2}} (x_{i,j} - \boldsymbol{\beta}^{T} \mathbf{X}_{-j})^{2} + \lambda \left\|\boldsymbol{\beta}\right\|_{1}$$
Adaptation of CRT to high-dim logistic regresssion

Decorrelated test statistic

$$\begin{split} T_{j}^{\text{decorr}} &= \\ -(n\,\hat{\mathbf{I}}_{j\,|-j})^{-1/2}\,\sum_{i=1}^{n}\left[y_{i} - \frac{1}{1 + \exp\left(-\mathbf{X}_{i,-j}\hat{\boldsymbol{\beta}}^{d_{y,j}}\right)}\right]\left[\mathbf{X}_{i,j} - \mathbf{X}_{i,-j}^{T}\hat{\boldsymbol{\beta}}^{d_{\mathbf{X}_{*,j}}}\right], \end{split}$$

where $\hat{I}_{j|-j}$ is the estimated partial Fisher information:

$$\hat{\mathbf{I}}_{j|-j} = \frac{1}{n} \sum_{i=1}^{n} \frac{\exp\left(\hat{\boldsymbol{\beta}} \mathbf{X}_{i,*}\right)}{[1 + \exp\left(\hat{\boldsymbol{\beta}} \mathbf{X}_{i,*}\right)]^2} (\mathbf{X}_{i,j} - \hat{\boldsymbol{\beta}}^{d_x T} \mathbf{X}_{i,-j})^2 \ \mathbf{X}_{i,j}.$$

Asymptotic distribution (Ning and Liu, 2017)

$$T_j^{\text{decorr}} \xrightarrow[n \to +\infty]{\mathcal{H}_0^j} \mathcal{N}(0,1)$$

Assumptions in Clustered Inference

Spatial homogeneity with distance δ

For all $(j, k) \in [p] \times [p]$, $d(j, k) \leq \delta$ implies that $\Sigma_{j,k} \geq 0$, where $\Sigma_{j,k} \triangleq \operatorname{Cov}(\mathbf{x}_j, \mathbf{x}_k)$.

Sparse-smooth with distance δ

 $\text{For all } (j,k) \in [p] \times [p], \ d(j,k) \leq \delta \text{ implies that } \operatorname{sign}(\beta_j^0) = \operatorname{sign}(\beta_k^0).$