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Reproducibility Crisis: on Popular Media...

Washington’s lawyer surplus Ehe New York Times
The 4 How to do a nuclear deal with Iran
X000 00000 4 DEAM  Investment tips from Nobel economists wawoata
Junk bonds are back
[R— P I'hemnl:’:lsz:hinkndnllw New Truths That Only One Can

SCIENCE
GO®Es

Einsteinium

WRONG.

https://wwv.economist.com/leaders/2013/10/21/how-science-goes-wrong
https://www.nytimes.com/2014/01/21/science/new-truths-that-only-one-can-see.html

By George Johnson
12n.20,2014

Since 1955, The Journal of Irreproducible Results has offered
“spoofs, parodies, whimsies, burlesques, lampoons and satires”
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Reproducibility Crisis: ...and Scientific Essay/Paper

Statistical “Discoveries” and Effect-Size Estimation

BRANKO SORIC*

Why Most Published Research Findings
Are False

John P.A.loannidis
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Most Discoveries Might Be False (Ioannidis, 2005)

Naive Hypothesis Testing

» p = 100,000 hypotheses (brain voxels), only 2,000 are important.

» Testing at 5% significant level, assume all important variables are
selected:

5% x 98,000

~ 70
2000 + 5% x 98,000 &

False Discovery Proportion =

Motivation | 6



Most Discoveries Might Be False (Ioannidis, 2005)

Naive Hypothesis Testing

» p = 100,000 hypotheses (brain voxels), only 2,000 are important.

» Testing at 5% significant level, assume all important variables are
selected:

5% x 98,000
2000 + 5% x 98,000

False Discovery Proportion = ~ 70%

False Discovery Rate (Benjamini and Hochberg, 1995)

» False Discovery Rate: the average number of false discoveries made
among all discoveries.

» FDR control is less conservative than Family-Wise Error Rate control
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Marginal Inference

> X € R"*? y € R*. Example: X is MRI data, y outcome
» Linear Model
y =XB° + o¢,

with ¢ > 0, £ ~ N(0,1,)

» Support set S 2 {7 €[p] ’ﬁlo #0};
» Objective: find S C S as large as possible

Motivation | 7



Marginal Inference

>
>

X € R**?  y € R™. Example: X is MRI data, y outcome
Linear Model
y =XB° + o¢,

with ¢ > 0, £ ~ N(0,1,)

Support set S 2 {7 €[p] ’Blo #0};
Objective: find S C S as large as possible

Marginal Testing
For each j = 1,...p:

(null) 7 : X,; Ly vs. (alternative) ), : X,,; Ly

— FDR control: easy, solvable problem (Poldrack et al., 2012)
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Conditional Inference

Source: Weichwald et al. (2015)

Conditional Independence Testing

Generalized Linear Model (GLM): y = g(X3°) + o¢
Testing variable j but also taking interaction with other variables X_;

(null) # : X,; Ly |X_; vs. (alternative) H/, : X.; Ly |X_;,

or, equivalently
(null) 7—[{, : 37 =0 vs. (alternative) H, B2 # 0.
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FDR control with Conditional Inference

Conditional inference is challenging in high-dimensional settings: how
to obtain statistical guarantee: p-value, confidence interval?

— FDR controlling?

!Barber and Candés (2015); Candes et al. (2018)
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FDR control with Conditional Inference

Conditional inference is challenging in high-dimensional settings: how
to obtain statistical guarantee: p-value, confidence interval?

— FDR controlling?

Knockoff Inference !

State-of-the-art in high-dimension conditional inference with
guaranteed FDR control

!Barber and Candés (2015); Candes et al. (2018)
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Knockoff Inference

Knockoff variables (Candes et al., 2018)

X = (X1,...,Xp) is model-X knockoff variables of X = (xy,...,x%,) iff:

1. For all subset £ C {1,...,p}: (X,X)swap()c) L (X,X)
2. X Ly|X

[l

Knockoff variables: noisy copies of original variables

Motivation | 10



Knockoff Inference

Step 1 — Model-X Knockoft

Assuming distribution of X is known, construct knockoff variables,
concatenate [X, X] € R"*2?

Step 2

Calculate knockoff test-statistics W: Lasso coeffictent-difference,
obtain

« 1 5
8= min §||Y - [X,X1B8I13 + A8l

weR

then take the difference: W; = \BJ(A)| — |Bj+p(>\)| for each j

Motivation | 11



Knockoff Inference

Step 3 — FDR control threshold

For given t > 0, False Discoveries Proportion can be estimated as:

—  1plel]| W< )
FDP() = e bl W= g V1

then, for FDR level a € (0, 1), calculate the threshold

T:min{t>0|@(t)§a}

Step 4
Select the variables: S(7) = {j € [p] | W; > 7}

Motivation | 12



FDP estimation with Knockoff Statistic

0

Figure: Knockoff Statistic Distribution
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FDP estimation with Knockoff Statistic

S={j:W; >t}

0 t

Figure: Knockoff Statistic Distribution
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FDP estimation with Knockoff Statistic

\
\ N° False Positives =
\ #{j:W; >t]jeS}

S={j:W; >t}

Figure: Knockoff Statistic Distribution
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FDP estimation with Knockoff Statistic

— 14+ #{j : W; < —t}

FDP(t) = — W 1= 0
=35>0

N°False Positives ~ .
#{j:W; < —t} S={j:W; >t}
.
~
~
-t 0 t

Figure: Knockoff Statistic Distribution

Candes et al. (2018, Lemma 3.3): Under ’Hé 2 ﬁ]o = 0, the distribution
of W; is symmetric around 0, z.e. (W, —W}) are exchangeable.
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Knockoff Inference: Theoretical Guarantee

Theorem (Barber and Candeés, 2015; Candeés et al., 2018)

FDR(7) = E <a

= )

18(7)| v 1
where S¢ = [p|\S: set of null index.

|A<r>mSC|]

» Result is non-asymptotic.
» Model-X assumption: distribution of X is known.

» Proof: using martingale theory (optional stopping time theorem).

Motivation | 14



Knockoff Inference: Theoretical Guarantee

Theorem (Barber and Candeés, 2015; Candeés et al., 2018)

HGIES
[S(T)| V1

where §¢ = [p]\S: set of null index.

FDR(r) = E <a

— )

» Result is non-asymptotic.
» Model-X assumption: distribution of X is known.

» Proof: using martingale theory (optional stopping time theorem).

AN Major issue: inference results are random.
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Demonstration: Instability of Knockoff Procedure

y=XB+a¢
e | ‘ ‘Snr
p sparsity
> n =500, p= 1000
> X ~N(0,%)
1 p p? ... pPt
Pt 1 P o.opP2
> E= ¢ |, with p€[0,1)
pP=2 pP=3 1 p
pP~L pP2 pp3 1
> &~ ./\/(0, In)
S|

» sparsity = —
p
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Demonstration: Instability of Knockoff Procedure

40

20
20

0 " " " " 0
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
FDP Power

Figure: 100 runs of knockoff inference on the same simulated dataset
n=>500, p=1000, snr=3.0, p = 0.7, sparsity = 0.06

/N Large variance on both FDP and Power

Motivation | 16



Outline

Aggregation of Multiple Knockoffs
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Proposed Solution: Knockoff Statistics conversion

N°False Positives ~

#i Wy < —t}

AW, < 1)
PP = — 0w, s 0
\ N

. S=(j:w, =1}
\

\

t
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Proposed Solution: Knockoff Statistics conversion

N° False Positives =
#{k Wy, < —W;)

W, 0 W,

Introduce the intermediate p-values: convert Knockoff statistic W; to
7%
pj = p
1 if W;<0

if W;>0

Aggregation of Multiple Knockoffs | 18



AKO - Aggregation of Multiple Knockoffs

» Running multiple sampling of knockoffs, find knockoff statistics
» Convert knockoff statistics to intermediate p-values

» Quantile-aggregation of p-values (Meinshausen et al., 2009)

N., Chevalier, Thirion & Arlot (2020)

Aggregation of Multiple Knockoffs | 19



AKO - Aggregation of Multiple Knockoffs

» Running multiple sampling of knockoffs, find knockoff statistics

» Convert knockoff statistics to intermediate p-values

» Quantile-aggregation of p-values (Meinshausen et al., 2009)
Step 1: For b=1,2,...,B:

» Run knockoff sampling, calculate test statistic {VVj(b) ;‘7:1

» Convert the test statistic VVj(b) to f)](b):

1+ 4k w® < —w®
) # k e it W >0
by = p

1 if W;<0

N., Chevalier, Thirion & Arlot (2020)

Aggregation of Multiple Knockoffs | 19



AKO - Aggregation of Multiple Knockoffs

/1/7\4
v \
0.0 0.25 05 075 1.0

Step 2 — P-values Aggregation (Meinshausen et al., 2009)

— o — ~ (b o
P = mln{l,'y 1q7(p; ))} Vi € [p]
For v € (0,1) with g,(-) the empirical y-quantile function.
N., Chevalier, Thirion & Arlot (2020)

Aggregation of Multiple Knockoffs | 20



AKO - Aggregation of Multiple Knockoffs

Step 3 — FDR control with {p,}?_,

» Order p; ascendingly: p(1) < P2) - < P(p)
» Given FDR control level a € (0,1), find largest k£ such that:
» Dy < ka/p (Benjamini and Hochberg, 1995), or

> Dy < (Benjamini and Yekutieli, 2001)

o rx
p f:l l/i
— FDR threshold: 7 = P(x)
Step 4 — Estimate S

> SAKD:{jE[p]|ijT}

N., Chevalier, Thirion & Arlot (2020)

Aggregation of Multiple Knockoffs | 21



Theoretical Results for AKO

Assumption (Null Distribution of Knockoff Statistic)
The null knockoff statistics (W;);ecse are iid.

Lemma

Under the above assumption, and furthermore assume |S€¢| > 2,
for all j € S¢ the intermediate p-value p; satisfies

Ve (0,1): P(p <t)< |§;C|t

Remark

An improved version of Lemma 2, N., Chevalier, Thirion & Arlot
(2020).

Aggregation of Multiple Knockoffs | 22



Theoretical Results for AKO

Theorem (Finite-sample guarantee of FDR control)

Assuming the null knockoff statistics (Wj);es- are iid., and

|S¢| > 2, then for an arbitrary number of samplings B, the output
Suxo of Aggregation of Multiple Knockoff (AKQ) controls FDR
under predefined level o € (0,1), i.e.

g|Bmons)
|SAK0| V1

Remark

» An improved version of Theorem 1, N., Chevalier, Thirion & Arlot
(2020).

» AKO with B =1 is equivalent to KO.

Aggregation of Multiple Knockoffs | 23



Experimental Results - Synthetic Data

5007 5001
2504 2501
0- T T T T 0- T
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
FDP Power
201
50+
10

UL
0L+ T T T T T (Vs T t t a—
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
FDP Power

Histogram of FDP & Power under the same simulated dataset:
» 2500 runs of Original Knockoff (KO — top)
» 100 runs of Aggregated Knockoff (AKO, B = 25 — bottom)
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Experimental Results - Synthetic Data
» Vary each of the three simulation parameters while keeping the others

fixed
» Benchmarking methods:

» Ours: Aggregation of Multiple Knockoffs (AKO)

» Vanilla Knockoff (KO) (Barber and Candés, 2015; Candés et al., 2018)

> Related knockoff aggregation methods: Holden and Helton (2018)
(KO-HL), Emery and Keich (2019) (KO-EK), Gimenez and Zou (2019)
(KO-GZ)

> Debiased Lasso (DL-BH) (Javanmard and Javadi, 2019)

Aggregation of Multiple Knockoffs | 25



Experimental Results - Synthetic Data

» Vary each of the three simulation parameters while keeping the others
fixed

0.3 5 1.0
— KO — KOHL | =
o 0.2 = AKO —— KO-EK S

a —— KO-GZ —— DLBH | 0.5
w [=2)
0.1 1-=—= ©
| ©

0.0 < 0.0

A0 40 40 40 O

SNR
0.3 5 1.0
5
o 0.2 o
a) 205
“ 01 @
g
o0t——1 <00
07020020001 0202 07020020001 0202

Rho Rho

Figure: 100 runs with varying simulation parameters. Default:
SNR = 3.0, p = 0.5, sparsity = 0.06. FDR is controlled at level

a=0.1.
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Experimental Results - Brain Imaging

» Data: Human Connectome Project
» Objective: predict the experimental condition per task given brain
activity
> n = 900 subjects, p ~ 212000
» Preprocessing: dimension reduction by clustering
p = 212000 — p = 1000

Figure: Detection of significant brain regions for HCP data —
Emotion task (face vs. shape) (900 subjects)

» FDR control at @ = 0.1.
» Orange: brain areas with positive weight.
» Blue: brain areas with negative weight.

Aggregation of Multiple Knockoffs | 26



Experimental Results - Brain Imaging

1.0 1

0.94

0.81

0.7 1

0.6

0.51

0.4 4

0.3 T T

Jaccard Jaccard
index index
KO-DL AKO-DL

Figure: Jaccard index measuring the Jaccard similarity between the
KO/AKO solutions and the Debiased Lasso (DL) solution over 7
tasks of HCP900.
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A Conditional Randomization Test for High-dimensional Logistic
Regression
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Binary classification with logistic relationship

> Binary response vector y € {0,1}".
» Logistic relationship

1
1+ exp(=X],B°)

P(ys =1]Xi.)
> Estimate 3° with Penalized Logistic Regression:

n
3PEN _ argming. g, Zlog [1 + exp(—y,—(XZ*,B))] +X18]l; -

i=1

A Conditional Randomization Test for High-dimensional Logistic Regression | 29



Penalized Logistic Regression

BN = argming g, Y log [1 + exp(—v(X].8))] + MBI, -

=1

» When n < p: hard problem (Sur and Candés, 2019; Zhao et al., 2020)
— P-value? Confidence interval? Conditional Independence Testing?

> Original Knockoff Inference: possible with ¢;-logistic loss.

A Conditional Randomization Test for High-dimensional Logistic Regression | 30



Penalized Logistic Regression

BN = argming g, Y log [1 + exp(—v(X].8))] + MBI, -

=1

» When n < p: hard problem (Sur and Candés, 2019; Zhao et al., 2020)
— P-value? Confidence interval? Conditional Independence Testing?

> Original Knockoff Inference: possible with ¢;-logistic loss.

Conditional Randomization Test (CRT)

Candes et al. (2018): An alternative, more straight-forward method
to knockoff inference.

A Conditional Randomization Test for High-dimensional Logistic Regression | 30



Conditional Randomization Test (CRT)

Algorithm 1: Conditional Randomization Test

1 INPUT dataset (X,y), with X € R**?, y € R™, number of
sampling runs B, test statistic 7}, conditional distribution P; _;
foreachj=1,...,p;
OUTPUT vector of p-values {p; }le;
fory=1,2,...,pdo
for b=1,2,...,B do

1. Generate Xibj), a noisy variable from P;|_;;

2. Compute test statistics T} for original variable and Tj(b)

for noisy variables;
end

Compute the empirical p-value

B
L+ 25 Lz,
o 1+ B

p;

end

A Conditional Randomization Test for High-dimensional Logistic Regression | 31



Conditional Randomization Test (CRT)

A Huge computational cost: B inferences for each variable j
— O(Bp*) with Lasso program to compute T}

Distillation Conditional Randomization Test (Liu et al., 2020):
analytical formula for p-values

» Remove the multiple sampling of noisy variables.

» Pre-screening step: estimate SSCREENING [p], only calculate
test-statistics inside this set.

A Conditional Randomization Test for High-dimensional Logistic Regression | 32



Distillation Conditional Randomization Test (dCRT)
Algorithm 2: Lasso-dCRT (Liu et al., 2020)
1 INPUT dataset (X,y), X € R**?, y € R";
2 OUTPUT vector of p-values {pj}le;
3 SSCREENING _ {7 €lp]| BJPEN £0};
4 for j ¢ SSCREENING g,

5 ‘ pi=1
6 end

for j € SSCBEENING do

1. Distill info. of X_; to X, ; and y, obtain 3%+ and 3%
2. Obtain test statistic:

© o0

T, =vn (v = X B%) T (% — X_;8%)
Iy — X_jB%7 3| X j — X—j 8%+

|2

3. Compute (two-sided) p-value p; = 2[1 — & (| T}|)]
10 end

A Conditional Randomization Test for High-dimensional Logistic Regression | 33



Distillation Operation

For each variable 7, remowve all the conditional information of the
remaining variables X_; to X, ; and to y

Lasso-Distillation
> B = argmingeze-1 S0 10g |1+ exp(~w(XF_;8)] + AllBI,

2 . 1
> 3%0 (\) = argmingegs-1 5 [Xaj = X815 + A8,

dCRT test statistics

o y
T, = I = XB%) s X p7)

- X . AQdy.j X..—X 39, n——+oo N(O’l)'
ly —X—;B%7 2| Xs; — X B2

conditional to y and X_;

A Conditional Randomization Test for High-dimensional Logistic Regression | 34



Distillation Operator for Logistic Regression?

» Lasso-distillation in Liu et al. (2020): model misspecification with
logistic relationship

» Demo:
y = logit(

Xp"+ ot)

+"

Po Sl
sparsity  snr

> 100 simulations, p = 400, X ~ N (0, X) with 3 a Toeplitz matrix.

A Conditional Randomization Test for High-dimensional Logistic Regression | 35



Null distribution of dCRT test statistic

dCRT dCRT dCRT
3 3 3
2 2 2
8 g g
21 21 =
g g g
g So g
B B B
B -1 g -1 £
& ) &
2 -2 -2
3 -3 -3
-2 0 2 -2 0 2 -2 0 2
Theoretical Quantiles Theoretical Quantiles Theoretical Quantiles

(a) n = 200 (b) n = 400 (¢) n = 800

> QQ-Plot for one null dCRT statistic, 1000 samplings
> Fixed p = 400 varying, n € {200, 400,800}
» Theoretical quantile is of a standard Gaussian distribution

A Conditional Randomization Test for High-dimensional Logistic Regression | 36



Null distribution of dCRT test statistic

dCRT dCRT dCRT
3 3 3
2 2 2
8 g g
21 = =
g g g
g So g
B B B
B -1 g -1 £
& ) &
-2 -2 -2
3 -3 -3
-2 0 2 -2 0 2 -2 0 2
Theoretical Quantiles Theoretical Quantiles Theoretical Quantiles

(a) n = 200 (b) n = 400 (¢) n = 800

> QQ-Plot for one null dCRT statistic, 1000 samplings
> Fixed p = 400 varying, n € {200, 400,800}

» Theoretical quantile is of a standard Gaussian distribution

A Null distribution is far from standard normal

A Conditional Randomization Test for High-dimensional Logistic Regression | 36



Adaptation of CRT to high-dim logistic regresssion
> Ning and Liu (2017): Tj°°°™* - decorrelating test-statistic T;
» Finding Bd”: find BPEN, then omitting the jth coefficient
» Finding ,BAdxw: using weighted Lasso instead of standard Lasso.

A Conditional Randomization Test for High-dimensional Logistic Regression | 37



Adaptation of CRT to high-dim logistic regresssion
> Ning and Liu (2017): Tj°°°™* - decorrelating test-statistic T;
» Finding Bdwj: find BPEN, then omitting the jth coefficient
» Finding ,éd"w: using weighted Lasso instead of standard Lasso.

Intuition: based on classical Rao’s test score

BPEN = argming.p, Z log [1 + exp(—y; (XZT*,@))] +A 18]I,

=1

£(B)
l]‘l]Rao — nl/2vﬂ]z(ﬁ)i*l/2

gl=9
»> In high-dimension, T}*° is biased.
» The general formula of decorrelated test score T]-decorr is a debiased

version of T]R“.

A Conditional Randomization Test for High-dimensional Logistic Regression | 37



Proposed Solution: CRT-Logit

Algorithm 3: CRT-logit
1 INPUT dataset (X,y), X € R**P|y € R";
2 OUTPUT vector of p-values {pj}le;
3 3 « penalized MLE(X,y); S*¥eenizg « {4 ¢ [p] | BAJMLE # 0};
fOI‘j gé Ssc'r-eem‘ng do
| =1
end
for j € Sscreening 4.
1. ,@dxw + scaled_lasso(X.;, X. _;)
2. B4 <« (Bu, Bas- - Bt Bitas - Bp)
10 3. Tje°°™* + decorrelated test score(X,y)
4. ;21— B(| Teeom )

0w N O ot

11

12 end

A Conditional Randomization Test for High-dimensional Logistic Regression | 38



Effectiveness of decorrelation on test statistics

dCRT dCRT dCRT
3 3 3
2 2 . 2 5
2 . g . 2
21 g1 21
| g |
& <) &
8o 8o 8o
@ o )
B B B
-1 -1 =l
-2 -2 —2a
-3 -3 -3
- 0 2 - 4 2 - 0 2
Theoretical Quantiles Theoretical Quantiles Theoretical Quantiles
CRT-Logit CRT-Logit CRT-Logit
3 2 3
2 2
8 8 8
= Z 1 =
g g |
g <) 8
<] 3o 8o
2 2 2
=3 =3 =3
5 g g4
12 (2] w
-2 -2
3| -3
-2 0 2 -2 0 2 -2 0 2
Theoretical Quantiles Theoretical Quantiles Theoretical Quantiles
(a) n =200 (b) n =400 (c) n =800
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Simulation: Mildly High-dimensional Scenario

0.5 = dlasso 4
04 == KO-logit i
- o = dCRT ]
803 — CRT-logit | |
Ol eSS | = &&=
0.017 : " — " 1

Average power
OO0 O0O O -
O N OO

A0 90 20 0 60 o b 0P o® o QP (B (OF (P P S (P

snr rho sparsity

» 100 runs of simulations across varying parameters; FDR controlled
o =0.1.

» Methods: Debiased Lasso (dlasso), model-X Knockoff (KO-logit),
original dCRT (dCRT), our version of CRT (CRT-logit).
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Problem: Curse of Dimensionality

1.04 —— dCRT
=~ CRT-logit
5 0.84
g
2.0.61
o
i=
£ 0.4
o
>
< 0.21
0.0
qpe 5‘00 %QQ \b()Q ,bq)()g 65‘00

/\ Failure of detecting variables when dimension grows large.

A Conditional Randomization Test for High-dimensional Logistic Regression | 41



Inference with Clusters of Variables

» Solution: Dimension reduction via spatially constrained clustering
p — C such that C < p: cCRT-logit

Clustering _ Inference .
anr———— > — e —  (

» Stabilize inference results with multiple clusterings + p-values
aggregation (cCRT-logit-agg):

# S Infer?l}CL . - Ensembling
Clus efﬁr\gﬂ = | § = => £ )

(Dae) - - el
= ) : : G

Clugpo Inference S<

A Conditional Randomization Test for High-dimensional Logistic Regression | 42



Statistical inference with spatial tolerance

» Brain spatial organization: ”close” voxels <> ”close” weights

Null weight voxels
m Positive weight voxels

m Negative weight voxels

» Spatial tolerance § for false discoveries: FDR’

Declared Significant

True Positive

A Conditional Randomization Test for High-dimensional Logistic Regression | 43



False Discovery Rate with spatial tolerance

Declared Significant

True Positive

True Positive

» Distance between voxels: d(j,k) for (5, k) € [p]?
> S-null region: N° = {j € [p] | Vk € [p], d(s,k) <6 = B =0}

FDP’ and FDR’

Given an estimation of the support S:

{N° NS}
S|V 1

FDR® = E[FDP’]

FDP° =

A Conditional Randomization Test for High-dimensional Logistic Regression | 44



Theoretical Results for CRT-logit

Estimate support, for a € (0, 1):

~ cCRT-logit
> Sccrr-logit = FDR,control({pjc & f:l,a)
~ ~ cCRT-logit
> ScCRT—logit—agg = FDR,COHtI‘Ol({ij ogi ?:1’ OL)

Conjecture

If the clusters are independent, and all the clusters from all partitions
considered have a diameter smaller than ¢§, and the variables located

between clusters are positively correlated, then, the output Scch_logit
and ScCRT—logit—agg control FDR’ under predefined level o € (0,1), z.e.

limsup E

n—o0

|c§ccn'f—1ogit NN?| <a
|SAKO| V1

and

limsup E

n—00

|S‘CCRT—]A.ogit—agg N N6| S @
|3AKO| V1

where N is the 6-null region defined above.
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Semi-simulated dataset (HCP 900)

Semi-simulated dataset:
> Use real data X (e.g. emotion task).

» build B° independently from data of
different task, e.g. Xyotor_foot-

» Generate synthetic responses y from
Xemotion and /80'

1

Ply;=1|X;.) =
e =11 Xi) 1+ exp(—X; 8%+ 0&; )
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Semi-simulated dataset (HCP 900)

b cdlasso - | ~ - FDR control -
o cKO-Logit a2
E cdCRT d
[ cCRT-Logit
© cCRT-Logit-agg. {8
] cdlasso
3 cKO-Logit =
& cdCRT
2 cCRT-Logit
< cCRT-Logit-agg.
00 02 04 06 08 10 00 02 04 06 08 10
RELATIONAL GAMBLING

» FDR/Average Power of 50 runs of simulations on Human Brain
Connectome dataset.

> Parameters: n = 800 (taken from 400 subjects), SNR = 1.5. FDR’ is
controlled at level & = 0.1 and § = 8.

» Methods (clustering versions): Desparsified Lasso (cdlasso), model-X
Knockoff (cKO-logit), original dCRT (cdCRT), our version of CRT
(cCRT-logit) and the aggregation of CRT-logit across clusterings
(cCRT-logit-agg.)
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Semi-simulated dataset (HCP 900)

© cdlasso - | ~~- FDR control i )
o cKO-Logit

'3 cdCRT 1

£ cCRT-Logit

@ cCRT-Logit-agg.

cdlasso
cKO-Logit
cdCRT
cCRT-Logit
cCRT-Logit-agg.
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
RELATIONAL GAMBLING EMOTION SOCIAL

Avg. Power

-~ FDR control f

cCRT-Logit
cCRT-Logit-agg.

5-FDR, 6=8
o
=3
(e}
5
3

cdlasso
cKO-Logit {#i=—
cdCRT
cCRT-Logit
cCRT-Logit-agg.
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
LANGUAGE MOTOR_HAND MOTOR_FOOT WM

Avg. Power
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Related: Ensemble of Clustered Knockoffs

38 - Knockoff Inﬂ . : _—
Clus ermg# — it |
e = R ' '
Data . . | : ?‘x
=L o~ . . . N
e \ Knockoff Inference
CIusten'n T |

=

Nguyen et al. (2019), journal version in progress
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Outline

Conclusions & Perspectives
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Summary
New procedures for statistical inference with high-dimensional data

Aggregation of Multiple Knockoffs

» FDR control guarantee.

» Demonstrated empirically: more stable in inference results and higher
statistical power.

Conditional Randomization Test for high-dimensional
logistic regression (CRT-logit)

» Reduce computational cost of original CRT.

» Ensemble of clusterings version works well in very high-dimension.

Remark

Clustered version involves additional assumptions for statistical
guarantee.
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Perspectives

» Formal statement and proof of the Conjecture on FDR control with
CRT-logit

» Theoretical analysis of clustering inference with Knockoffs and
CRT-logit: relaxing the assumption on independence of clusters.

» Applications for genomics data.

» Generative networks for knockoff variables generation.
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Perspectives

» Formal statement and proof of the Conjecture on FDR control with
CRT-logit

» Theoretical analysis of clustering inference with Knockoffs and
CRT-logit: relaxing the assumption on independence of clusters.

» Applications for genomics data.

» Generative networks for knockoff variables generation.

Thank you for listening!
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Second-order Model-X Knockoffs

Shares the first two moments - mean and covariance, i.e. :
EX| =EX], EX7X]=% and E[X7X]=3 — diag{s}

Additional assumption: X has Gaussian design

. d
— X |Xj :N(H’V)
— Finding diag{s} by:
» Semi-definite Programming (SDP)
» Approximate Semi-definite program (ASDP)
» Equi-correlated
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Knockoff Statistic

Definition (Candeés et al. (2018))

A knockoff statistic W = { W, };¢[p) is a measure of feature
importance that satisfies the two following properties:

1. Depends only on X, X and y
W :f(X,f(,y), and

2. Swapping the original variable column x; and its knockoff column x;
will switch the sign of W; iff j is in the support set S:

; _ [ WX Ky)its e s
0% Flwion ) =§ B 5
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Theoretical Results for AKO

Assumption (Null Distribution of Knockoff Statistic)
Under the null hypothesis Hy ; : B]Q =0, the Knockoff Statistics
follow the same null distribution.

Lemma (Lemma 2 — N., Chevalier, Thirion, Arlot, 2020)

Under the above assumption, and furthermore assume |S¢| > 2,
for all 3 € S¢ the intermediate p-value p; satisfies

Vi€ (0,1): P(p; <)< 2t

- 15

where

_v2-2 <3.24

K= 22 2
V22 —32
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Theoretical Results for AKO

Theorem (Theorem 1 — N., Chevalier, Thirion, Arlot,
2020)

(Finite-sample guarantee of FDR control)

If, under the null hypothesis Hp ; : ﬁ]c-’ =0, the Knockoff Statistics
follow the same distribution, and if |S¢| > 2, then for an arbitrary
number of samplings B, the output Suxo of Aggregation of
Multiple Knockoff (AKO) controls FDR under predefined level

a € (0,1), ie.

Suxo N S°
g |[Sax0 0S|
|SAKO|\/1
V22 —2
where Kk = < 3.24.

V22 —32
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AKO extra results - Genome Wide Association Study
» Data: Flowering Phenotype of Arabidopsis Thaliana (FT_GH) -
n = 166, p = 9938
» Objective: detect association of 174 candidate genes with phenotype
FT_GH that dictates flowering time (Atwell et al., 2010).
» Preprocessing: dimension reduction following Slim et al. (2019)
p = 9938 — p = 1500.

Method Detected Genes
AKO AT2G21070, AT4G02780, AT5GA47640
KO AT2G21070

KO-GZ AT2G21070

DL-BH —

Table: List of detected genes associated with phenotype FT_GH.

From previous studies: AT2G21070 (Kim et al., 2008), AT4G02780

(Silverstone et al., 1998), AT5G47640 (Cai et al., 2007)
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Adaptation of CRT to high-dim logistic regresssion

> Tgecorr: Decorrelating test-statistic T; (Ning and Liu, 2017)
» Finding Bd”: find BPEN, then omitting the jth coefficient, z.e.

Bjy’j = (31732, e ,ijl,BHl, e 7/5)12)

» Finding ,BAde: using weighted Lasso instead of standard Lasso.

o 1 AT, .
B%es = argmingcgy-1 — Z exp (B Axl)
ni= L+ exp (BTx:)]?

(zi;—BTX_5)?+ X8,
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Adaptation of CRT to high-dim logistic regresssion

Decorrelated test statistic
T_decorr _
J

n

2 1 A
—(ni, "2 § v — S— {Xi'—XiT_ﬂdX**J},
( .7| .7) — 1 +€Xp (_Xi,—jﬂdy’]> 5] s —J

where f]-|_j is the estimated partial Fisher information:

N 1 n exp(,éXi *) A m )
I»i,:i A7 X_ T X‘i' X
o n; [1+exp (ﬁXi’*)]z( ij — B i—5)" Xij

Asymptotic distribution (Ning and Liu, 2017)

Tnjdecorr 0 N(O, 1)
n—>—+00
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Assumptions in Clustered Inference

Spatial homogeneity with distance o
For all (5, k) € [p] % [p], d(j, k) < ¢ implies that X; , > 0, where

3k 2 Cov(x;,Xg).

Sparse-smooth with distance ¢

For all (5, k) € [p] x [p], d(j, k) < ¢ implies that sign(3?) = sign(87).
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