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Reproducibility Crisis: on Popular Media...

https://www.economist.com/leaders/2013/10/21/how-science-goes-wrong

https://www.nytimes.com/2014/01/21/science/new-truths-that-only-one-can-see.html
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Reproducibility Crisis: ...and Scienti�c Essay/Paper

Soric (1989); Ioannidis (2005) Motivation | 5



Most Discoveries Might Be False (Ioannidis, 2005)

Naive Hypothesis Testing

I p = 100, 000 hypotheses (brain voxels), only 2, 000 are important.

I Testing at 5% signi�cant level, assume all important variables are

selected:

False Discovery Proportion =
5%× 98, 000

2000 + 5%× 98, 000
≈ 70%

False Discovery Rate (Benjamini and Hochberg, 1995)

I False Discovery Rate: the average number of false discoveries made

among all discoveries.

I FDR control is less conservative than Family-Wise Error Rate control
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Marginal Inference

I X ∈ Rn×p , y ∈ Rn . Example: X is MRI data, y outcome

I Linear Model

y = Xβ0 + σξ,

with σ > 0, ξ ∼ N (0, In)

I Support set S ∆
=
{
j ∈ [p]

∣∣β0i 6= 0
}
;

I Objective: �nd Ŝ ⊂ S as large as possible

Marginal Testing

For each j = 1, . . . p:

(null) Hj
0 : X∗,j ⊥y vs. (alternative) Hj

α : X∗,j 6⊥y

−→ FDR control: easy, solvable problem (Poldrack et al., 2012)
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Conditional Inference
Source: Weichwald et al. (2015)

Conditional Independence Testing

Generalized Linear Model (GLM): y = g(Xβ0) + σξ

Testing variable j but also taking interaction with other variables X−j

(null) Hj
0 : X∗,j ⊥y | X−j vs. (alternative) Hj

α : X∗,j 6⊥y | X−j ,

or, equivalently

(null) Hj
0 : β0j = 0 vs. (alternative) Hj

α : β0j 6= 0.

Motivation | 8



FDR control with Conditional Inference

Conditional inference is challenging in high-dimensional settings: how

to obtain statistical guarantee: p-value, con�dence interval?

−→ FDR controlling?

Knocko� Inference 1

State-of-the-art in high-dimension conditional inference with

guaranteed FDR control

1Barber and Cand�es (2015); Cand�es et al. (2018)
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Knocko� Inference

Knocko� variables (Cand�es et al., 2018)

X̃ = (x̃1, . . . , x̃p) is model-X knocko� variables of X = (x1, . . . , xp) i�:

1. For all subset K ⊂ {1, . . . , p}: (X, X̃)swap(K)
d
= (X, X̃)

2. X̃ ⊥ y | X

=d

Knocko� variables: noisy copies of original variables

Motivation | 10



Knocko� Inference

Step 1 { Model-X Knocko�

Assuming distribution of X is known, construct knocko� variables,

concatenate [X, ~X] ∈ Rn×2p

Step 2

Calculate knocko� test-statistics W: Lasso coe�cient-di�erence,

obtain

β̂ = min
w∈R2p

1

2
‖y − [X, ~X]β‖22 + λ‖β‖1

then take the di�erence: Wj = |β̂j (λ)| − |β̂j+p(λ)| for each j

Motivation | 11



Knocko� Inference

Step 3 { FDR control threshold

For given t > 0, False Discoveries Proportion can be estimated as:

F̂DP(t) =
1 + #{j ∈ [p] |Wj ≤ −t}
#{j ∈ [p] |Wj ≥ t} ∨ 1

then, for FDR level α ∈ (0, 1), calculate the threshold

τ = min
{
t > 0 | F̂DP(t) ≤ α

}

Step 4

Select the variables: Ŝ(τ) = {j ∈ [p] |Wj ≥ τ}

Motivation | 12



FDP estimation with Knocko� Statistic

0

Figure: Knocko� Statistic Distribution

Cand�es et al. (2018, Lemma 3.3): Under Hj
0 : β0j = 0, the distribution

of Wj is symmetric around 0, i.e. (Wj ,−Wk ) are exchangeable.
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FDP estimation with Knocko� Statistic
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Knocko� Inference: Theoretical Guarantee

Theorem (Barber and Cand�es, 2015; Cand�es et al., 2018)

FDR(τ) = E

[
|Ŝ(τ) ∩ Sc |
|Ŝ(τ)| ∨ 1

]
≤ α,

where Sc = [p]\S: set of null index.

I Result is non-asymptotic.

I Model-X assumption: distribution of X is known.

I Proof: using martingale theory (optional stopping time theorem).

4! Major issue: inference results are random.

Motivation | 14
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Demonstration: Instability of Knocko� Procedure

snrsparsity

I n = 500 , p = 1000

I X ∼ N (0,Σ)

I Σ =


1 ρ ρ2 . . . ρp−1

ρ1 1 ρ . . . ρp−2

... . . .
. . . . . .

...

ρp−2 ρp−3 . . . 1 ρ

ρp−1 ρp−2 ρp−3 . . . 1

 , with ρ ∈ [0, 1)

I ξ ∼ N (0, In)

I sparsity =
|S|
p

Motivation | 15



Demonstration: Instability of Knocko� Procedure

Figure: 100 runs of knocko� inference on the same simulated dataset

n=500, p=1000, snr=3.0, ρ = 0.7, sparsity = 0.06

4! Large variance on both FDP and Power

Motivation | 16
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Proposed Solution: Knocko� Statistics conversion

t-t 0

Introduce the intermediate p-values: convert Knocko� statistic Wj to

p̂j :

p̂j =


1 + #{k : Wk ≤ −Wj }

p
if Wj > 0

1 if Wj ≤ 0
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AKO { Aggregation of Multiple Knocko�s

I Running multiple sampling of knocko�s, �nd knocko� statistics

I Convert knocko� statistics to intermediate p-values

I Quantile-aggregation of p-values (Meinshausen et al., 2009)

Step 1: For b = 1, 2, . . . ,B :

I Run knocko� sampling, calculate test statistic {W (b)
j }

p
j=1

I Convert the test statistic W
(b)
j to p̂

(b)
j :

p̂
(b)
j =


1 + #{k : W

(b)
k ≤ −W (b)

j }
p

if W
(b)
j > 0

1 if Wj ≤ 0

N., Chevalier, Thirion & Arlot (2020)
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AKO { Aggregation of Multiple Knocko�s

Step 2 { P-values Aggregation (Meinshausen et al., 2009)

p̄j = min
{
1, γ−1qγ(p̂

(b)
j )
}
∀j ∈ [p]

For γ ∈ (0, 1) with qγ(·) the empirical γ-quantile function.
N., Chevalier, Thirion & Arlot (2020)

Aggregation of Multiple Knocko�s | 20



AKO { Aggregation of Multiple Knocko�s

Step 3 { FDR control with {p̄j}pj=1

I Order p̄j ascendingly: p̄(1) < p̄(2) · · · < p̄(p)

I Given FDR control level α ∈ (0, 1), �nd largest k such that:
I p̄(k) ≤ kα/p (Benjamini and Hochberg, 1995), or

I p̄(k) ≤
kα

p
∑p

i=1
1/i

(Benjamini and Yekutieli, 2001)

−→ FDR threshold: τ = p̄(k)

Step 4 { Estimate Ŝ

I ŜAKO = {j ∈ [p] | p̄j ≤ τ}

N., Chevalier, Thirion & Arlot (2020)

Aggregation of Multiple Knocko�s | 21



Theoretical Results for AKO

Assumption (Null Distribution of Knocko� Statistic)

The null knocko� statistics (Wj )j∈S c are i.i.d.

Lemma

Under the above assumption, and furthermore assume |Sc | ≥ 2,

for all j ∈ Sc the intermediate p-value p̂j satis�es

∀t ∈ (0, 1) : P(p̂j ≤ t) ≤ p

|Sc |
t

Remark

An improved version of Lemma 2, N., Chevalier, Thirion & Arlot

(2020).

Aggregation of Multiple Knocko�s | 22



Theoretical Results for AKO

Theorem (Finite-sample guarantee of FDR control)

Assuming the null knocko� statistics (Wj )j∈S c are i.i.d. , and

|Sc | ≥ 2, then for an arbitrary number of samplings B, the output

ŜAKO of Aggregation of Multiple Knocko� (AKO) controls FDR

under prede�ned level α ∈ (0, 1), i.e.

E

[
|ŜAKO ∩ Sc |
|ŜAKO | ∨ 1

]
≤ α

Remark

I An improved version of Theorem 1, N., Chevalier, Thirion & Arlot

(2020).

I AKO with B = 1 is equivalent to KO.

Aggregation of Multiple Knocko�s | 23



Experimental Results - Synthetic Data

250

500

250

500

Histogram of FDP & Power under the same simulated dataset:

I 2500 runs of Original Knocko� (KO { top)

I 100 runs of Aggregated Knocko� (AKO, B = 25 { bottom)
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Experimental Results - Synthetic Data
I Vary each of the three simulation parameters while keeping the others

�xed
I Benchmarking methods:

I Ours: Aggregation of Multiple Knocko�s (AKO)
I Vanilla Knocko� (KO) (Barber and Cand�es, 2015; Cand�es et al., 2018)
I Related knocko� aggregation methods: Holden and Helton (2018)

(KO-HL), Emery and Keich (2019) (KO-EK), Gimenez and Zou (2019)

(KO-GZ)
I Debiased Lasso (DL-BH) (Javanmard and Javadi, 2019)
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Figure: 100 runs with varying simulation parameters. Default:

SNR = 3.0, ρ = 0.5, sparsity = 0.06. FDR is controlled at level

α = 0.1.
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Experimental Results - Brain Imaging
I Data: Human Connectome Project

I Objective: predict the experimental condition per task given brain

activity

I n = 900 subjects, p ≈ 212000

I Preprocessing: dimension reduction by clustering

p = 212000 −→ p = 1000

Figure: Detection of signi�cant brain regions for HCP data {

Emotion task (face vs. shape) (900 subjects)

I FDR control at α = 0.1.

I Orange: brain areas with positive weight.

I Blue: brain areas with negative weight.
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Experimental Results - Brain Imaging

Jaccard 
 index 

 KO - DL

Jaccard 
 index 

 AKO - DL

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure: Jaccard index measuring the Jaccard similarity between the

KO/AKO solutions and the Debiased Lasso (DL) solution over 7

tasks of HCP900.
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Binary classi�cation with logistic relationship

I Binary response vector y ∈ {0, 1}n .
I Logistic relationship

P(yi = 1 | Xi,∗) =
1

1 + exp(−XT
i,∗β

0)
.

I Estimate β0 with Penalized Logistic Regression:

β̂PEN = argminβ∈Rp

n∑
i=1

log
[
1 + exp(−yi (XT

i,∗β))
]

+ λ ‖β‖1 .

A Conditional Randomization Test for High-dimensional Logistic Regression | 29



Penalized Logistic Regression

β̂PEN = argminβ∈Rp

n∑
i=1

log
[
1 + exp(−yi (XT

i,∗β))
]

+ λ ‖β‖1 .

I When n < p: hard problem (Sur and Cand�es, 2019; Zhao et al., 2020)

−→ P-value? Con�dence interval? Conditional Independence Testing?

I Original Knocko� Inference: possible with `1-logistic loss.

Conditional Randomization Test (CRT)

Cand�es et al. (2018): An alternative, more straight-forward method

to knocko� inference.
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Conditional Randomization Test (CRT)
Algorithm 1: Conditional Randomization Test

1 INPUT dataset (X, y), with X ∈ Rn×p , y ∈ Rn , number of

sampling runs B , test statistic Tj , conditional distribution Pj |−j
for each j = 1, . . . , p ;

2 OUTPUT vector of p-values {p̂j }pj=1;

3 for j = 1, 2, . . . , p do

4 for b = 1, 2, . . . ,B do

5 1. Generate X̃
(b)
∗,j , a noisy variable from Pj |−j ;

6 2. Compute test statistics Tj for original variable and T̃
(b)
j

for noisy variables;
7 end

8 Compute the empirical p-value

p̂j =
1 +

∑B

b=1 1{T̃ (b)
j
≥Tj }

1 + B

9 end

A Conditional Randomization Test for High-dimensional Logistic Regression | 31



Conditional Randomization Test (CRT)

4! Huge computational cost: B inferences for each variable j

−→ O(Bp4) with Lasso program to compute Tj

Distillation Conditional Randomization Test (Liu et al., 2020):

analytical formula for p-values

I Remove the multiple sampling of noisy variables.

I Pre-screening step: estimate ŜSCREENING ⊂ [p], only calculate

test-statistics inside this set.

A Conditional Randomization Test for High-dimensional Logistic Regression | 32



Distillation Conditional Randomization Test (dCRT)
Algorithm 2: Lasso-dCRT (Liu et al., 2020)

1 INPUT dataset (X, y), X ∈ Rn×p , y ∈ Rn ;

2 OUTPUT vector of p-values {pj }pj=1;

3 ŜSCREENING = {j ∈ [p] | β̂PEN
j 6= 0};

4 for j /∈ ŜSCREENING do

5 pj = 1

6 end

7 for j ∈ ŜSCREENING do

8 1. Distill info. of X−j to X∗,j and y, obtain β̂dX∗,j and β̂dy ,j

9 2. Obtain test statistic:

Tj =
√
n

(y − X−j β̂
dy ,j )T (xj − X−j β̂

dX∗,j )

‖y − X−j β̂dy ,j ‖2‖X∗,j − X−j β̂
dX∗,j ‖2

3. Compute (two-sided) p-value pj = 2[1− Φ (|Tj |)]
10 end
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Distillation Operation

For each variable j , remove all the conditional information of the

remaining variables X−j to X∗,j and to y

Lasso-Distillation

I β̂dy ,j = argminβ∈Rp−1

∑n

i=1 log
[
1 + exp(−yi (XT

i,−jβ))
]

+ λ ‖β‖1

I β̂dX∗,j (λ) = argminβ∈Rp−1

1

2
‖X∗,j − X−jβ‖22 + λ ‖β‖1

dCRT test statistics

Tj =
√
n

(y − X−j β̂
dy ,j )T (xj − X−j β̂

dX∗,j )

‖y − X−j β̂dy ,j ‖2‖X∗,j − X−j β̂
dX∗,j ‖2

Hj
0−−−−−→

n→+∞
N (0, 1) .

conditional to y and X−j
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Distillation Operator for Logistic Regression?

I Lasso-distillation in Liu et al. (2020): model misspeci�cation with

logistic relationship

I Demo:

snrsparsity
I 100 simulations, p = 400, X ∼ N (0,Σ) with Σ a Toeplitz matrix.

A Conditional Randomization Test for High-dimensional Logistic Regression | 35



Null distribution of dCRT test statistic

I QQ-Plot for one null dCRT statistic, 1000 samplings

I Fixed p = 400 varying, n ∈ {200, 400, 800}
I Theoretical quantile is of a standard Gaussian distribution

4! Null distribution is far from standard normal
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Adaptation of CRT to high-dim logistic regresssion
I Ning and Liu (2017): T decorr

j { decorrelating test-statistic Tj

I Finding β̂dy ,j : �nd β̂PEN, then omitting the j th coe�cient
I Finding β̂dX∗,j : using weighted Lasso instead of standard Lasso.

Intuition: based on classical Rao's test score

β̂PEN = argminβ∈Rp

n∑
i=1

log
[
1 + exp(−yi (XT

i,∗β))
]

︸ ︷︷ ︸
`(β)

+λ ‖β‖1

T Rao
j = n1/2∇βj

`(β)̂I
−1/2
j |−j

I In high-dimension, T Rao
j is biased.

I The general formula of decorrelated test score T decorr
j is a debiased

version of T Rao
j .
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I In high-dimension, T Rao
j is biased.

I The general formula of decorrelated test score T decorr
j is a debiased

version of T Rao
j .
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Proposed Solution: CRT-Logit

Algorithm 3: CRT-logit

1 INPUT dataset (X, y), X ∈ Rn×p , y ∈ Rn ;

2 OUTPUT vector of p-values {pj }pj=1;

3 β̂ ← penalized MLE(X, y); Ŝscreening ← {j ∈ [p] | β̂MLE
j 6= 0};

4 for j /∈ Ŝscreening do
5 pj = 1

6 end

7 for j ∈ Ŝscreening do
8 1. β̂dX∗,j ← scaled lasso(X∗,j ,X∗,−j )

9 2. β̂dy ,j ← (β̂1, β̂2, . . . , β̂j−1, β̂j+1, . . . , β̂p)

10 3. T decorr
j ← decorrelated test score(X, y)

11 4. pj ← 2[1− Φ(|T decorr
j |)]

12 end
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E�ectiveness of decorrelation on test statistics
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(b) n = 400
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(c) n = 800
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Simulation: Mildly High-dimensional Scenario
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I 100 runs of simulations across varying parameters; FDR controlled

α = 0.1.

I Methods: Debiased Lasso (dlasso), model-X Knocko� (KO-logit),

original dCRT (dCRT), our version of CRT (CRT-logit).
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Problem: Curse of Dimensionality
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4! Failure of detecting variables when dimension grows large.
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Inference with Clusters of Variables
I Solution: Dimension reduction via spatially constrained clustering

p −→ C such that C � p: cCRT-logit

Data
InferenceClustering

I Stabilize inference results with multiple clusterings + p-values

aggregation (cCRT-logit-agg):

Data

Ensembling

Clustering #B

Clustering #1
Inference

Inference
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Statistical inference with spatial tolerance
I Brain spatial organization: "close" voxels ↔ "close" weights

Negative weight voxels

Null weight voxels

Positive weight voxels

I Spatial tolerance δ for false discoveries: FDRδ

δ

Declared Signi�cant

True Positive

True Positive
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False Discovery Rate with spatial tolerance

δ

Declared Signi�cant

True Positive

True Positive

I Distance between voxels: d(j , k) for (j , k) ∈ [p]2

I δ-null region: N δ =
{
j ∈ [p] | ∀k ∈ [p], d(j , k) ≤ δ =⇒ β0

k = 0
}

FDPδ and FDRδ

Given an estimation of the support Ŝ:

FDPδ =
|{N δ ∩ Ŝ}|
|Ŝ| ∨ 1

FDRδ = E[FDPδ]
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Theoretical Results for CRT-logit
Estimate support, for α ∈ (0, 1):

I ŜcCRT-logit = FDR control({p̂cCRT-logitj }pj=1, α)

I ŜcCRT-logit-agg = FDR control({p̂cCRT-logitj }pj=1, α)

Conjecture

If the clusters are independent, and all the clusters from all partitions

considered have a diameter smaller than δ, and the variables located

between clusters are positively correlated, then, the output ŜcCRT-logit
and ŜcCRT-logit-agg control FDRδ under prede�ned level α ∈ (0, 1), i.e.

lim sup
n→∞

E

[
|ŜcCRT-logit ∩N δ|
|ŜAKO | ∨ 1

]
≤ α

and

lim sup
n→∞

E

[
|ŜcCRT-logit-agg ∩N δ|

|ŜAKO | ∨ 1

]
≤ α

where N δ is the δ-null region de�ned above.
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Semi-simulated dataset (HCP 900)

Semi-simulated dataset:

I Use real data X (e.g. emotion task).

I build β0 independently from data of

di�erent task, e.g. Xmotor foot.

I Generate synthetic responses y from

Xemotion and β0.
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Semi-simulated dataset (HCP 900)

I FDR/Average Power of 50 runs of simulations on Human Brain

Connectome dataset.

I Parameters: n = 800 (taken from 400 subjects), SNR = 1.5. FDRδ is

controlled at level α = 0.1 and δ = 8.

I Methods (clustering versions): Desparsi�ed Lasso (cdlasso), model-X

Knocko� (cKO-logit), original dCRT (cdCRT), our version of CRT

(cCRT-logit) and the aggregation of CRT-logit across clusterings

(cCRT-logit-agg.)
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Semi-simulated dataset (HCP 900)
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Related: Ensemble of Clustered Knocko�s

Data

Ensembling

Clustering #B

Clustering #1
Knockoff Inference

Knockoff Inference

Nguyen et al. (2019), journal version in progress
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Aggregation of Multiple Knocko�s

A Conditional Randomization Test for High-dimensional Logistic

Regression

Conclusions & Perspectives
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Summary
New procedures for statistical inference with high-dimensional data

Aggregation of Multiple Knocko�s

I FDR control guarantee.

I Demonstrated empirically: more stable in inference results and higher

statistical power.

Conditional Randomization Test for high-dimensional

logistic regression (CRT-logit)

I Reduce computational cost of original CRT.

I Ensemble of clusterings version works well in very high-dimension.

Remark

Clustered version involves additional assumptions for statistical

guarantee.
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Perspectives

I Formal statement and proof of the Conjecture on FDR control with

CRT-logit

I Theoretical analysis of clustering inference with Knocko�s and

CRT-logit: relaxing the assumption on independence of clusters.

I Applications for genomics data.

I Generative networks for knocko� variables generation.

Thank you for listening!
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Perspectives

I Formal statement and proof of the Conjecture on FDR control with

CRT-logit

I Theoretical analysis of clustering inference with Knocko�s and

CRT-logit: relaxing the assumption on independence of clusters.

I Applications for genomics data.

I Generative networks for knocko� variables generation.
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Second-order Model-X Knocko�s

Shares the �rst two moments - mean and covariance, i.e. :

E[X̃] = E[X], E[X̃T X̃] = Σ and E[X̃TX] = Σ− diag{s}

Additional assumption: X has Gaussian design

−→ x̃j | xj
d
= N (µ,V)

−→ Finding diag{s} by:
I Semi-de�nite Programming (SDP)

I Approximate Semi-de�nite program (ASDP)

I Equi-correlated
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Knocko� Statistic

De�nition (Cand�es et al. (2018))

A knocko� statistic W = {Wj }j∈[p] is a measure of feature

importance that satis�es the two following properties:

1. Depends only on X, X̃ and y

W = f (X, X̃, y), and

2. Swapping the original variable column xj and its knocko� column x̃j
will switch the sign of Wj i� j is in the support set S:

Wj ([X, X̃]swap(S), y) =

{
Wj ([X, X̃], y) if j ∈ Sc
−Wj ([X, X̃], y) if j ∈ S
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Theoretical Results for AKO

Assumption (Null Distribution of Knocko� Statistic)

Under the null hypothesis H0,j : β0j = 0, the Knocko� Statistics

follow the same null distribution.

Lemma (Lemma 2 { N., Chevalier, Thirion, Arlot, 2020)

Under the above assumption, and furthermore assume |Sc | ≥ 2,

for all j ∈ Sc the intermediate p-value p̂j satis�es

∀t ∈ (0, 1) : P(p̂j ≤ t) ≤ κp

|Sc |
t

where

κ =

√
22− 2

7
√
22− 32

≤ 3.24
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Theoretical Results for AKO

Theorem (Theorem 1 { N., Chevalier, Thirion, Arlot,

2020)

(Finite-sample guarantee of FDR control)

If, under the null hypothesis H0,j : β0j = 0, the Knocko� Statistics

follow the same distribution, and if |Sc | ≥ 2, then for an arbitrary

number of samplings B, the output ŜAKO of Aggregation of

Multiple Knocko� (AKO) controls FDR under prede�ned level

α ∈ (0, 1), i.e.

E

[
|ŜAKO ∩ Sc |
|ŜAKO | ∨ 1

]
≤ κα

where κ =

√
22− 2

7
√
22− 32

≤ 3.24.
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AKO extra results - Genome Wide Association Study
I Data: Flowering Phenotype of Arabidopsis Thaliana (FT GH) {

n = 166, p = 9938
I Objective: detect association of 174 candidate genes with phenotype

FT GH that dictates 
owering time (Atwell et al., 2010).
I Preprocessing: dimension reduction following Slim et al. (2019)

p = 9938 −→ p = 1500.

Method Detected Genes

AKO AT2G21070, AT4G02780, AT5G47640

KO AT2G21070

KO-GZ AT2G21070

DL-BH |

Table: List of detected genes associated with phenotype FT GH.

From previous studies: AT2G21070 (Kim et al., 2008), AT4G02780

(Silverstone et al., 1998), AT5G47640 (Cai et al., 2007)
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Adaptation of CRT to high-dim logistic regresssion

I T decorr
j : Decorrelating test-statistic Tj (Ning and Liu, 2017)

I Finding β̂dy ,j : �nd β̂PEN, then omitting the j th coe�cient, i.e.

β̂
dy ,j
j = (β̂1, β̂2, . . . , β̂j−1, β̂j+1, . . . , β̂p)

I Finding β̂dX∗,j : using weighted Lasso instead of standard Lasso.

β̂dX∗,j = argminβ∈Rp−1

1

n

n∑
i=1

exp (β̂Txi )

[1 + exp (β̂Txi )]2
(xi,j−βTX−j )

2+λ ‖β‖1
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Adaptation of CRT to high-dim logistic regresssion

Decorrelated test statistic
T decorr
j =

−(n Îj |−j )
−1/2

n∑
i=1

[
yi −

1

1 + exp (−Xi,−j β̂dy ,j )

] [
Xi,j − XT

i,−j β̂
dX∗,j

]
,

where Îj |−j is the estimated partial Fisher information:

Îj |−j =
1

n

n∑
i=1

exp (β̂Xi,∗)

[1 + exp (β̂Xi,∗)]2
(Xi,j − β̂dxTXi,−j )

2 Xi,j .

Asymptotic distribution (Ning and Liu, 2017)

T decorr
j

Hj
0−−−−−→

n→+∞
N (0, 1)
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Assumptions in Clustered Inference

Spatial homogeneity with distance δ

For all (j , k) ∈ [p]× [p], d(j , k) ≤ δ implies that Σj ,k ≥ 0, where

Σj ,k
∆
= Cov(xj , xk ).

Sparse-smooth with distance δ

For all (j , k) ∈ [p]× [p], d(j , k) ≤ δ implies that sign(β0
j ) = sign(β0

k ).
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